

Security research:
CODESYS Runtime,
a PLC control
framework

Alexander Nochvay

18.09.2019

Version 1.0

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

1
© KASPERSKY, 1997 – 2019

Contents

The framework .. 3

CODESYS Runtime: description of the object of research .. 4

Product bundle offered by the CODESYS Group ... 4

Architecture ... 5

Components ... 5

Component structure .. 6

Structure of communication interfaces ... 6

Component configuration ... 11

Adaptation ... 12

Implementation .. 13

Installer file ... 13

Configuration file .. 14

Executable file .. 15

Running process .. 16

Information from public sources .. 20

Investigating the CODESYS PDU protocol stack ... 21

Basic description of the protocol ... 21

Analysis of the protocol stack .. 24

Block Driver layer ... 24

Datagram layer ... 27

Channel layer ... 36

Services layer ... 46

Tags.. 49

Detected vulnerabilities and potential attacks .. 56

Description of the testing bench .. 56

Attacks at the Datagram layer ... 57

IP spoofing ... 57

Setting an arbitrary parent node ... 63

Vulnerability in the channel layer. Predictability of the channel ID .. 66

Vulnerabilities of the Services layer .. 68

Vulnerabilities in the authentication system ... 68

Vulnerability of application code ... 74

In conclusion ... 78

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

2
© KASPERSKY, 1997 – 2019

Research on the security of technologies used by automation system developers that can
potentially be applied at industrial facilities across the globe is a high-priority area of work for the
Kaspersky Industrial Systems Emergency Response Team (Kaspersky ICS CERT).

This article continues the discussion of research on popular OEM technologies that are
implemented in the products of a large number of vendors. Vulnerabilities in such technologies
are highly likely to affect the security of many, if not all, products that use them. In some cases,
this means hundreds of products that are used in industrial environments and in critical
infrastructure facilities. This is the case with CODESYS Runtime®, a framework by CODESYS
designed for developing and executing industrial control system software. The trademark rights
are held by 3S-Smart Software Solutions – a member of the CODESYS Group.

According to the developer’s official information, CODESYS Runtime has already been adapted
for more than 350 devices from different vendors, used in the energy sector, industrial
manufacturing, internet of things and industrial internet of things systems, etc. It should also be
noted that the actual adoption figures are much higher, since many vendors’ PLCs that use the
CODESYS Runtime framework are missing from the official list. The number of such devices
continues to grow: there were only 140 of them in 2016. We won’t be surprised if this trend
continues into the future.

Fragments of technical information were removed at the request of the CODESYS Group.
Request more information from security@codesys.com.

https://ics-cert.kaspersky.com/
https://www.codesys.com/products/codesys-runtime.htm
https://devices.codesys.com/device-directory.html
mailto:security@codesys.com

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

3
© KASPERSKY, 1997 – 2019

The framework

Today, the use of ready-made software code in a product is a rule rather than an exception.

This enables the developers of a new product to avoid ‘reinventing the wheel’, helping reduce

development time.

The degree to which third-party code affects a software product that incorporates it, and the

degree to which it affects the security of a system where that product us used, can vary.

Third-party code is often used to implement a specific function or set of functions, such as

rendering images or the user interface, sending files to the printer or saving data in a

database. We have conducted security research and identified vulnerabilities in third-party

code before. For example, in 2017, in part of SafeNet Sentinel, a hardware-based solution

designed to control licensing agreement compliance and protect applications from being

‘cracked’, and in 2018, in the OPC UA library by OPC Foundation.

The situation with the CODESYS framework is different: vendors of CODESYS-based PLCs

adapt the framework for their hardware and, if necessary, develop additional modules using

services provided by CODESYS. PLC end-users (i.e., engineers) use the CODESYS

development environment to develop the code of industrial process automation programs.

And the execution flow of the additional modules developed and the industrial process

automation program is controlled on PLCs by the versions of CODESYS Runtime adapted for

those PLCs.

The fact that the framework controls the execution flow of the program means that using the

framework imposes restrictions at the architecture level – at the product design stage. In other

words, the framework is a sophisticated mechanism that is already in place, and the user’s

code must be designed to be a cog in that mechanism.

In terms of ensuring security when using a framework, the developer must address the

following questions:

 What’s inside the framework?

 How does it work?

 How do I make my software secure if there is a vulnerability in the framework, rather

than in my code?

This paper is devoted to research on the security of CODESYS Runtime. In it, we address

the first two of the above questions: what happens inside the framework and how it works.

We also demonstrate a technique for identifying vulnerabilities without being able to analyze

the source code.

https://ics-cert.kaspersky.com/reports/2018/01/22/a-silver-bullet-for-the-attacker-a-study-into-the-security-of-hardware-license-tokens/
https://ics-cert.kaspersky.com/reports/2018/01/22/a-silver-bullet-for-the-attacker-a-study-into-the-security-of-hardware-license-tokens/
https://ics-cert.kaspersky.com/reports/2018/01/22/a-silver-bullet-for-the-attacker-a-study-into-the-security-of-hardware-license-tokens/
https://ics-cert.kaspersky.com/reports/2018/05/10/opc-ua-security-analysis/

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

4
© KASPERSKY, 1997 – 2019

CODESYS Runtime: description of the object of research

Before discussing the results of research on an object’s security, it is essential to clarify what

that object is. We developed the technical description of CODESYS Runtime provided in this

chapter in the process of analyzing the framework.

Product bundle offered by the CODESYS Group

The CODESYS Group develops two main products:

1. CODESYS Development System, a development environment;

2. CODESYS Runtime, an execution environment.

The two products work together. The CODESYS Development System is an IDE used to

develop software for controlling devices on which CODESYS Runtime runs. The development

environment includes numerous tools designed to simplify the development and testing

process.

In the context of our research, it is important that the CODESYS Development System is

a customizable development environment. Solutions based on it include IDE SoMachine by

Schneider Electric, TwinCAT by Beckhoff Automation, IdraWorks by Bosch, Wagilo Pro by

WAGO, IDEs under the name of CODESYS Development System by Owen, STW Technic,

and prolog-plc, as well as other IDEs.

To program a controller using the CODESYS Development System IDE, CODESYS Runtime

should be running on the controller. For CODESYS Runtime to run correctly on a specific

device, it has to be adapted to the operating system and hardware selected. According to

information on the CODESYS official website, CODESYS developers themselves have only

adapted CODESYS Runtime for 15 devices. However, distributors have adapted CODESYS

Runtime for over 350 devices.

CODESYS Runtime adaptations include versions for:

 Single-board Linux-based computers, such as Raspberry Pi, UniPi, and BeagleBone;

 Windows and Linux based Soft PLC installations;

 PLCs by ASEM S.p.A, exceet electronics AG, Hitachi Europe GmbH, Hans Turck

GmbH & Co. KG, elrest Automationssysteme GmbH, Janz Tec AG, Kendrion Kuhnke

Automation GmbH, Beijer Electronics, ifm electronic gmbh, Nidec Control Techniques

Limited, Advantech Europe B.V, WAGO Kontakttechnik GmbH & Co. KG, KEB

Automation KG, Berghof Automation GmbH, and many other vendors.

https://devices.codesys.com/device-directory.html

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

5
© KASPERSKY, 1997 – 2019

Architecture

Components

CODESYS Runtime is based on a component-oriented architecture. This means that each

logical or functional part of CODESYS Runtime is divided into one or more components or

modules.

Each component is responsible for a specific task in a specific functional area, such as

logging, network communication, communication over serial cables, core load balancing,

program debugging, etc.

CODESYS Runtime component-oriented architecture

Source: https://www.codesys.com/fileadmin/data/Downloads/Broschueren/CODESYS-Runtime-en.pdf

The following modules can be identified as the main CODESYS Runtime components:

1. Component Manager or CM – the component that launches and initializes all other

components on a system;

2. System Components – the group of components that define communication with the

operating system and the hardware. Components in this group are responsible for

communicating with physical ports and with the file system, for dynamic and static memory

allocation, etc.

3. Communication Components – the group of components for communicating with the

outside world, e.g., over the network or serial cables;

4. Application components – components responsible for controlling the PLC program;

5. Core components – components for controlling the PLC and its state.

A developer has several ways of extending CODESYS Runtime:

1. Replacing existing components;

2. Writing custom components;

3. Write custom components designed to extend the functionality of existing components.

https://www.codesys.com/fileadmin/data/Downloads/Broschueren/CODESYS-Runtime-en.pdf

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

6
© KASPERSKY, 1997 – 2019

Component structure

CODESYS components are dynamic libraries (the equivalent of *.dll in Windows

and *.so in Linux). All components are loaded by the Component Manager component.

CODESYS Runtime can be built either statically or dynamically.

If CODESYS Runtime is built statically, the components’ code is contained in the executable

file itself.

If CODESYS Runtime is built dynamically, a list of components to be loaded is specified

in the configuration file and the component files are located separately from the executable

file.

The structure of a component file was not an object of this study, but it can be said with

confidence that the structure includes:

 The component’s program code;

 The component’s name, the author’s name, component version and description;

 Various checksums and magic numbers.

Structure of communication interfaces

For a researcher, the structure of component files is not as interesting as how CODESYS

Runtime communicates with external components and how internal components communicate

with each other.

Each component must include the following functions: initialization function, export function,

import function, event handling function, and a function to create and remove its instance.

A component must also have a unique numeric identifier.

The functions that delete and create a component’s instance are optional. They turned out

to be empty for most components. For this reason, they will not be covered by this paper.

The remaining functions are discussed below.

Implementation of the initialization function

The initialization function is analogous to an entry point for PE and ELF files; the only

difference is that it does not start the component’s actual operation. The function is called by

the Component Manager.

01 Removed at the vendor’s request

02: {

03: Removed at the vendor’s request

04: Removed at the vendor’s request

05: Removed at the vendor’s request

06: Removed at the vendor’s request

07: Removed at the vendor’s request

08: Removed at the vendor’s request

09: Removed at the vendor’s request

[...]

17: Removed at the vendor’s request

18: }

Decompiled code of the inutialization function of CmpBlkDrvUdp component from

the Communication group

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

7
© KASPERSKY, 1997 – 2019

The function ModuleCmpBlkDrvUdp_entry is an initialization function. The function takes the

structure INIT_STRUCT as an argument. The function is usually called using the Component

Manager to populate the structure. The initialization function populates all the fields in the

structure, including all the functions mentioned above and the component identifier, which is

equal to 7 for the CmpBlkDrvUdp component.

Implementation of the event handling function

The next function of interest is the event handling function. For the CmpBlkDrvUdp

component, this is the ModuleCmpBlkDrvUdp_hook function. It determines what the

Component Manager requires it to do based on the event ID received.

Main event identifiers:

 CH_INIT_SYSTEM – ID 1. If a component is in the System Components group,

it must be initialized;

 CH_INIT – ID 2. Components must initialize all local variables;

 CH_INIT2 – ID 3. The component must initialize;

 CH_INIT_TASKS – ID 5. The component can execute its threads;

 CH_INIT_COMM – ID 6. The component can start communication;

 CH_EXIT_COMM – ID 10. The component must close all communication channels;

 CH_EXIT_TASKS – ID 11. The component must stop and terminate all threads of

execution created by it;

 CH_EXIT2 – ID 13. The component must save all data before calling CH_EXIT;

 CH_EXIT – ID 14. The component must release memory;

 CH_EXIT_SYSTEM – ID 15. If the component is in the System Components group,

it must release memory;

 CH_COMM_CYCLE – ID 20. It is called in every cycle and is used for the execution

threads created.

CH_INIT_SYSTEM

CH_INIT

CH_INIT2

CH_INIT_TASKS

CH_EXIT_TASKS

CH_EXIT2

CH_EXIT

CH_EXIT_SYSTEM

CODESYS
components

DLL_PROCESS_ATTACH

DLL_PROCESS_DETACH

DLL_THREAD_DETACH

DLL_THREAD_ATTACH

Windows
dynamic
libraries

CH_INIT_COMM

CH_EXIT_COMM

Cycle
start

Cycle
end

Cycle
start

Cycle
end

CODESYS component lifecycle compared to Windows Dynamic Link Library lifecycle

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

8
© KASPERSKY, 1997 – 2019

Like events created when calling a DLL in Windows, events handled by a CODESYS

component are created in ‘mirror’ pairs: [СH_INIT_SYSTEM – CH_EXIT_SYSTEM],

[СH_INIT – CH_EXIT], etc.

001: Removed at the vendor’s request

002: {

003: Removed at the vendor’s request

004: Removed at the vendor’s request

005: Removed at the vendor’s request

006: Removed at the vendor’s request

007: Removed at the vendor’s request

008:

009: Removed at the vendor’s request

010: {

011: Removed at the vendor’s request : // Initialization of the component’s variables

012: Removed at the vendor’s request

013: Removed at the vendor’s request

014: Removed at the vendor’s request

015: Removed at the vendor’s request

016: Removed at the vendor’s request

017: Removed at the vendor’s request

018: Removed at the vendor’s request

019: Removed at the vendor’s request

020: Removed at the vendor’s request

021: Removed at the vendor’s request

022: Removed at the vendor’s request

023: Removed at the vendor’s request

024: Removed at the vendor’s request

025: Removed at the vendor’s request : // Initialization of the component. Setting values from the

configuration file

026: Removed at the vendor’s request

027: Removed at the vendor’s request

028: Removed at the vendor’s request

029: Removed at the vendor’s request

030: Removed at the vendor’s request

031: Removed at the vendor’s request

032: Removed at the vendor’s request

033: Removed at the vendor’s request

034: {

035: iRemoved at the vendor’s request

036: Removed at the vendor’s request

037: Removed at the vendor’s request

038: Removed at the vendor’s request

039: Removed at the vendor’s request

040: }

041: Removed at the vendor’s request

042: {

043: Removed at the vendor’s request

044: Removed at the vendor’s request

045: {

046: Removed at the vendor’s request

047: Removed at the vendor’s request

048: Removed at the vendor’s request

049: Removed at the vendor’s request

050: Removed at the vendor’s request

051: Removed at the vendor’s request

052: }

053: }

054: Removed at the vendor’s request

055: Removed at the vendor’s request // Creating a communication thread and starting communication

056: Removed at the vendor’s request

057: Removed at the vendor’s request

058: {

059: Removed at the vendor’s request

060: Removed at the vendor’s request

061: Removed at the vendor’s request

062: }

063: Removed at the vendor’s request

064: Removed at the vendor’s request : // Completing communication

065: Removed at the vendor’s request

066: Removed at the vendor’s request

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

9
© KASPERSKY, 1997 – 2019

067: {

068: Removed at the vendor’s request

069: Removed at the vendor’s request

070: Removed at the vendor’s request

071: }

072: Removed at the vendor’s request

073: Removed at the vendor’s request: // Saving data and releasing it

074: Removed at the vendor’s request

075: {

076: Removed at the vendor’s request

077: {

078: Removed at the vendor’s request

079: Removed at the vendor’s request

080: Removed at the vendor’s request

081: }

082: Removed at the vendor’s request

083: Removed at the vendor’s request

084: }

085: Removed at the vendor’s request

086: {

087: Removed at the vendor’s request

088: Removed at the vendor’s request

089: }

090: Removed at the vendor’s request

091: Removed at the vendor’s request // Updating the communication socket

092: Removed at the vendor’s request

093: {

094: Removed at the vendor’s request

095: Removed at the vendor’s request

096: {

097: Removed at the vendor’s request

098: Removed at the vendor’s request

099: }

100: Removed at the vendor’s request

101: }

102: Removed at the vendor’s request

103: Removed at the vendor’s request :

104: Removed at the vendor’s request

105: }

106: }

Decompiled code of the ModuleCmpBlkDrvUdp_hook function, demomstrating the handling of event

by the CmpBlkDrvUdp component

Using the function ModuleCmpBlkDrvUdp_hook as an example, we can see the following:

 Components can ignore prescribed event handling rules and use one handler to

handle several different events, as implemented in the function used in this example:

when handling the event CH_INIT_COMM, a thread is both initialized and executed,

although the event CH_INIT_TASKS is designed to perform the latter task;

 Components do not necessarily have to handle all events. Specifically, components

do not have to handle both ‘symmetrical’ events if one of the two ‘mirror’ events has

already been handled. For example, the component CmpBlkDrvUdp does not handle

the event CH_EXIT, although it handled the event CH_INIT.

Implementation of import and export functions

The export function and the import function use a mechanism that provides the same overall

capabilities as exported and imported functions in Windows and Linux dynamic libraries. The

main way in which import and export functions of CODESYS components are different from

Windows and Linux libraries is that these functions register exported functions and initialize

pointers that point to imported functions.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

10
© KASPERSKY, 1997 – 2019

01: Removed at the vendor’s request

02: {

03: Removed at the vendor’s request

04: Removed at the vendor’s request

05: Removed at the vendor’s request

06: Removed at the vendor’s request

07: }

08:

09: Removed at the vendor’s request

10: Removed at the vendor’s request

11: Removed at the vendor’s request

12: Removed at the vendor’s request

13:

14: Removed at the vendor’s request

15: {

16: Removed at the vendor’s request

17:

18: Removed at the vendor’s request

19:

20: Removed at the vendor’s request

21: }

22:

Pseudocode for the export function of the CmpRasPi component (available only in CODESYS Runtime

for Raspberry PI)

The function CMRegisterAPI takes a pointer which points to an array populated with exported

functions as its first argument and the component identifier as its last argument. Here is an

example of an exported function: line 10 of the code fragment shown above contains the

structure exported_function populated with the following values: pointer which points to the

function sub_84e5bc0, function name “raspiyuv”, hash 0xF81Fd05, and version 0x3050400.

Thus, the CmpRasPi component provides all other CODESYS components and application

programs with an API that enables them to communicate with the camera module on the

Raspberry PI device. An example of the use of the API is shown below in the sample project

Camera.project for CODESYS Control for Raspberry Pi.

1: PROGRAM PLC_PRG

2: VAR

3: xTakePicture: BOOL;

4: END_VAR

5:

6: IF xTakePicture THEN

7: Raspberry_Pi_Camera.Still('-o Picture.jpg');

8: xTakePicture := FALSE;

9: END_IF

Camera.project program code

Each component’s import function attempts to find functions exported by other components

and record their addresses.

01: Removed at the vendor’s request

02: {

03: Removed at the vendor’s request

04: Removed at the vendor’s request

05: Removed at the vendor’s request

06: Removed at the vendor’s request

07: Removed at the vendor’s request

08: Removed at the vendor’s request

09: Removed at the vendor’s request

10: Removed at the vendor’s request

11: [...]

12:

Import function in the CmpApp module

https://store.codesys.com/systeme/codesys-control-for-raspberry-pi-sl.html?p=4

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

11
© KASPERSKY, 1997 – 2019

The function CMGetAPI2 looks for a function that was registered by another component.

The first argument is the function’s name, the second is the value in which to save the function

pointer obtained, the third is the expected hash of the function, if the hash is passed, and the

last argument is the expected version.

Prior to this, all these functions were registered by the SysTarget component.

01: Removed at the vendor’s request

02: Removed at the vendor’s request

03: Removed at the vendor’s request

04: Removed at the vendor’s request

05: Removed at the vendor’s request

06: Removed at the vendor’s request

07: Removed at the vendor’s request

08: Removed at the vendor’s request

09: Removed at the vendor’s request

10: Removed at the vendor’s request

11: Removed at the vendor’s request

12: Removed at the vendor’s request

13: Removed at the vendor’s request

14: Removed at the vendor’s request

15: Removed at the vendor’s request

16: Removed at the vendor’s request

Fragment of the exported functions array

The mechanism of importing and exporting functions provides developers with core

functionality for creating their own components or extending the capabilities of existing

components.

Component configuration

Since the component configuration mechanism demonstrates how part of the CODESYS

Runtime architecture operates, it is discussed here as a conclusion to the chapter on the

architecture of CODEYS Runtime.

A CODESYS Runtime user can control components via an .ini configuration file. An .ini

configuration file is a text file containing keys and parameters used to configure components.

[...]

28: [CmpWebServer]

29: ConnectionType=0

30:

31: [CmpOpenSSL]

[...]

Fragment of configuration file for CODESYS Control for Raspberry Pi

The Component Manager initializes all components. System components, such

as CmpMemPool, CmpLog, CmpSettings, SysFile, etc., are the first to be initialized.

********* CoDeSysControl DEMO VERSION - runs 2 hours*********

[...]

===

1526222855: Cmp=CM, Class=1, Error=0, Info=4, pszInfo= CODESYS Control V3

1526222855: Cmp=CM, Class=1, Error=0, Info=5, pszInfo= Copyright (c) 3S - Smart Software Solutions GmbH

1526222855: Cmp=CM, Class=1, Error=0, Info=6, pszInfo= <version>3.5.12.0</version> <builddate>Dec 18

2017</builddate>

===

1526222855: Cmp=CM, Class=1, Error=0, Info=10, pszInfo= System: <cmp>CM</cmp>, <id>0x00000001</id>

<ver>3.5.12.0</ver>

1526222855: Cmp=CM, Class=1, Error=0, Info=10, pszInfo= System: <cmp>CmpMemPool</cmp>, <id>0x0000001e</id>

<ver>3.5.12.0</ver>

1526222855: Cmp=CM, Class=1, Error=0, Info=10, pszInfo= System: <cmp>CmpLog</cmp>, <id>0x00000013</id>

<ver>3.5.12.0</ver>

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

12
© KASPERSKY, 1997 – 2019

1526222855: Cmp=CM, Class=1, Error=0, Info=10, pszInfo= System: <cmp>CmpSettings</cmp>,

<id>0x0000001a</id> <ver>3.5.12.0</ver>

1526222855: Cmp=CM, Class=1, Error=0, Info=10, pszInfo= System: <cmp>SysFile</cmp>, <id>0x00000104</id>

<ver>3.5.12.0</ver>

1526222855: Cmp=CM, Class=1, Error=0, Info=10, pszInfo= System: <cmp>SysTimer</cmp>, <id>0x00000116</id>

<ver>3.5.12.0</ver>

1526222855: Cmp=CM, Class=1, Error=0, Info=10, pszInfo= System: <cmp>SysTimeRtc</cmp>, <id>0x00000127</id>

<ver>3.5.12.0</ver>

[...]

Fragment of CODESYS Control for Raspberry Pi startup log

One of the system components, CmpSettings, is of interest because its export function registers

APIs that are used by all other components to get parameters from the configuration file.

01: Removed at the vendor’s request

02: Removed at the vendor’s request

03: Removed at the vendor’s request

04: Removed at the vendor’s request

05: Removed at the vendor’s request

06: Removed at the vendor’s request

07: Removed at the vendor’s request

08: Removed at the vendor’s request

09: Removed at the vendor’s request

10: Removed at the vendor’s request

11: Removed at the vendor’s request

12: Removed at the vendor’s request

13: Removed at the vendor’s request

14: Removed at the vendor’s request

15: Removed at the vendor’s request

Fragment of the exported functions array of the CmpSettings component

The functions SettgGetIntValue and SettgGetStringValue are used by most components to

determine their operating parameters. Using cross-references from the calls of these

functions, it can be determined which components can be configured via the configuration file

and which keys should be included in the configuration file.

By searching for calls of the SettgGetIntValue function using cross-references, it is possible to

find the key DemoTimeUnlimited for configuring the ComponentManager component:

01: Removed at the vendor’s request

02: {

03: Removed at the vendor’s request

04:

05: Removed at the vendor’s request

06: Removed at the vendor’s request

07: Removed at the vendor’s request

08: Removed at the vendor’s request

09: Removed at the vendor’s request

10: Removed at the vendor’s request

11: Removed at the vendor’s request

12: Removed at the vendor’s request

13: Removed at the vendor’s request

14: }

Configuration keys for the ComponentManager component

Adaptation

Support for adapting CODESYS Runtime for any hardware and operating system is certainly

its main feature. Developers of products that use the framework are responsible for adapting

CODESYS Runtime to the needs and requirements of the specific application, including the

industrial process type. The adapted CODESYS Runtime framework should be able to

communicate with hardware interfaces and the Ethernet, release and allocate memory, work

with the timer, events, inter-thread communication, etc.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

13
© KASPERSKY, 1997 – 2019

System components from the CODESYS Runtime component-oriented architecture

The adaptation of system components is performed by exporting functions required by other

components (this process was described in the previous chapter).

Upon analyzing several variants of CODESYS Runtime, we determined that there are a total

of 25 system components. The main system components are listed below:

SysTimer, SysTimeRtc, SysTime, SysTask, SysTarget, SysSocket, SysShm, SysSemProcess,

SysSemCount, SysSem, SysReadWriteLock, SysProcess, SysOut, SysMutex, SysMsgQ,

SysModule, SysMem, SysInternalLib, SysFile, SysExcept, SysEvent, SysEthernet, SysDir,

SysCpuHandling, SysCom

The main system components

After ensuring that the system components operate properly, the developer should create

custom CODESYS Runtime modules for PLCs with the specific functionality required.

Implementation

The first version of CODESYS Control for Raspberry Pi was released in December 2016. In

June 2018, a version for Linux (CODESYS Control for Linux SL) was released. There is also

a CODESYS Control emulator for Windows, which is part of the CODESYS Development

System software package. All these implementations are analogous to the CODESYS Control

for Raspberry Pi implementation and have similar or identical implementation elements.

In this chapter, we discuss the implementation of CODESYS Runtime using CODESYS

Control for Raspberry Pi and CODESYS Control for Linux SL as examples.

Installer file

The CODESYS Development System transfers a CODESYS Control installer to the Raspberry

Pi device using the SSH client. The installer is a .deb (Debian binary package) file.

dpkg -c codesyscontrol_arm_raspberry_V3.5.12.0.deb

drwxr-xr-x root/root 0 2017-12-18 09:22 ./

drwxr-xr-x root/root 0 2017-12-18 09:22 ./var/

drwxr-xr-x root/root 0 2017-12-18 09:22 ./var/opt/

drwxr-xr-x root/root 0 2017-12-18 09:22 ./var/opt/codesys/

drwxr-xr-x root/root 0 2017-12-18 09:22 ./var/opt/codesys/backup/

drwxr-xr-x root/root 0 2017-12-18 09:22 ./var/opt/codesys/cmact_licenses/

-rwxr-xr-x root/root 2640 2017-12-18 09:22 ./var/opt/codesys/bacstacd.ini

-rw-r--r-- root/root 20736 2017-12-18 09:22 ./var/opt/codesys/3SLicense.wbb

drwxr-xr-x root/root 0 2017-12-18 09:22 ./var/opt/codesys/restore/

drwxr-xr-x root/root 0 2017-10-09 14:16 ./etc/

-rw-r--r-- root/root 216 2017-10-09 14:16 ./etc/CODESYSControl_User.cfg

drwxr-xr-x root/root 0 2017-12-18 09:22 ./etc/init.d/

-rw-r--r-- root/root 3355 2017-12-18 09:22 ./etc/init.d/codesyscontrol

-rw-r--r-- root/root 158 2017-10-09 14:16 ./etc/3S.dat

-rw-r--r-- root/root 943 2017-10-09 14:16 ./etc/CODESYSControl.cfg

drwxr-xr-x root/root 0 2017-12-18 09:22 ./opt/

drwxr-xr-x root/root 0 2017-12-18 09:22 ./opt/codesys/

drwxr-xr-x root/root 0 2017-12-18 09:22 ./opt/codesys/bin/

-rwxr-xr-x root/root 7330296 2017-12-18 09:22 ./opt/codesys/bin/codesyscontrol.bin

drwxr-xr-x root/root 0 2017-12-18 09:22 ./opt/codesys/scripts/

Contents of the .deb file

The main elements of the .deb file are the configuration file and the executable file.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

14
© KASPERSKY, 1997 – 2019

Configuration file

The configuration file includes a huge number of different configuration parameters for

CODESYS Control. The following conclusions can be made based on the contents of the file:

 CODESYS Control for Raspberry Pi can work as a web server;

 CODESYS Control for Raspberry Pi uses OpenSSL;

 There are logging parameters for the CmpLog component;

 Parameters of the CmpSettings component can include references to other files;

 For the SysProcess component, there is the key Command.%d, the value of whose

parameter is the same as the name of the shutdown system utility in Linux OS.

01: # cat etc/CODESYSControl_User.cfg

02: [SysCom]

03: ;Linux.Devicefile=/dev/ttyS

04:

05: [CmpBlkDrvCom]

06: ;Com.0.Name=MyCom

07: ;Com.0.Baudrate=115200

08: ;Com.0.Port=3

09: ;Com.0.EnableAutoAddressing=1

10:

11: [SysProcess]

12: Command.0=shutdown

13:

14: [CmpApp]

15: Bootproject.RetainMismatch.Init=1

01: # cat etc/CODESYSControl.cfg

02: [SysFile]

03: FilePath.1=/etc/, 3S.dat

04: PlcLogicPrefix=0

05:

06: [CmpLog]

07: Logger.0.Name=/tmp/codesyscontrol.log

08: Logger.0.Filter=0x0000000F

09: Logger.0.Enable=1

10: Logger.0.MaxEntries=1000

11: Logger.0.MaxFileSize=1000000

12: Logger.0.MaxFiles=1

13: Logger.0.Backend.0.ClassId=0x00000104 ;writes logger messages in a file

14: Logger.0.Type=0x314 ;Set the timestamp to RTC

15:

16: [CmpSettings]

17: FileReference.0=SysFileMap.cfg, SysFileMap

18: FileReference.1=/etc/CODESYSControl_User.cfg

19:

20: [SysExcept]

21: Linux.DisableFpuOverflowException=1

22: Linux.DisableFpuUnderflowException=1

23: Linux.DisableFpuInvalidOperationException=1

24:

25: [CmpBACnet]

26: IniFile=bacstacd.ini

27:

28: [CmpWebServer]

29: ConnectionType=0

30:

31: [CmpOpenSSL]

32: WebServer.Cert=server.cer

33: WebServer.PrivateKey=server.key

34: WebServer.CipherList=HIGH

35:

36: [SysMem]

37: Linux.Memlock=0

38:

39: [CmpCodeMeter]

40: InitLicenseFile.0=3SLicense.wbb

41:

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

15
© KASPERSKY, 1997 – 2019

42: [SysEthernet]

43: Linux.ProtocolFilter=3

44:

45: [CmpSchedule]

46: ProcessorLoad.Enable=1

47: ProcessorLoad.Maximum=95

48: ProcessorLoad.Interval=5000

Contents of the configuration file for CODESYS Control For Raspberry Pi v3.5.14.10

Executable file

File protection parameters

An initial analysis of executable files usually includes checking the compilation options for

security parameter settings. The checksec tool shows the following security parameter values

for executable files.

./checksec.sh/checksec -o csv -f codesyscontrol_armv6l_raspberry.bin

No RELRO,No Canary found,NX disabled,No PIE,RPATH,No RUNPATH,No SYMTABLES,No

Fortify,0,23,codesyscontrol_armv6l_raspberry.bin

./checksec.sh/checksec -o csv -f codesyscontrol_armv7l_raspberry.bin

No RELRO,No Canary found,NX disabled,No PIE,RPATH,No RUNPATH,No SYMTABLES,No

Foritfy,0,23,codesyscontrol_armv7l_raspberry.bin

Result of checking CODESYS Control for Raspberry Pi v3.5.14.10 executable files with the checksec utility

Results produced by the utility demonstrate that the executable files of CODESYS Control for

Raspberry Pi v3.5.14.10 were compiled without additional protection that might make

exploiting binary vulnerabilities more difficult.

The situation with the compilation of the CODESYS Control for Linux SL file is slightly better,

because the file has the option PIE enabled.

./checksec.sh/checksec -o csv -f codesyscontrol.bin

Partial RELRO,No Canary found,NX disabled,PIE enabled,No RPATH,No RUNPATH,No

SYMTABLES,No Fortify,0,23,codesyscontrol.bin

Result of running the checksec utility on the executable files of CODESYS Control for Linux SL v3.5.14.10

The state of the executable file

Static analysis of the executable file using the IDA Pro tool shows that 99% of the file is data

(shown in green) rather than machine code:

State of the packed executable file of CODESYS Runtime For Raspberry Pi

This state is typical of executable files whose machine code is packed. However, all

executable files must have an entry point. For the executable file of CODESYS Runtime for

Raspberry Pi, the entry point is the start function, so this function can be the one with which

to start an analysis.

Removed at the vendor’s request

Removed at the vendor’s request

Removed at the vendor’s request

Removed at the vendor’s request

https://github.com/slimm609/checksec.sh

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

16
© KASPERSKY, 1997 – 2019

Removed at the vendor’s request

Removed at the vendor’s request

Removed at the vendor’s request

Removed at the vendor’s request

Removed at the vendor’s request

Removed at the vendor’s request

Removed at the vendor’s request

Removed at the vendor’s request

Removed at the vendor’s request

Removed at the vendor’s request

Removed at the vendor’s request

Removed at the vendor’s request

Removed at the vendor’s request

Removed at the vendor’s request

Removed at the vendor’s request

Removed at the vendor’s request

Removed at the vendor’s request

Removed at the vendor’s request

Assembler code of the start function

The start function’s code is recognized normally and IDA Pro suggests that the function

sub_86a0840, a.k.a. the main function, also contains valid program code.

1: Removed at the vendor’s request

2: {

3: Removed at the vendor’s request

4: Removed at the vendor’s request

5: Removed at the vendor’s request

6: Removed at the vendor’s request

7: Removed at the vendor’s request

8: }

Decompiled pseudocode of the function sub_86a0840

The main function stores the number of command-line arguments used and a pointer pointing

to their values in global variables (lines 3:4). Next, it calls the mprotect function (line 5), which

changes the access parameters for the memory area. The first argument is a pointer pointing

to the start function, which is also the beginning of the .text segment. The second argument is

the size of the memory whose access parameter will be changed. The memory size should

also point to the end of the segment. The last argument is the memory access parameters

replacing the original parameters. It is equal to 7, i.e., the sum of the values of the parameters

PROT_READ | PROT_WRITE | PROT_EXEC.

In other words, line 5 prepares a memory area in which program code is to be unpacked and

executed. After that, the next function is called (line 6) and a pointer to the memory area in

which the variable dword_86A0460 is stored is passed to it as an argument. The pointer

points to the original main function after it has been unpacked.

Thus, for the file to be further analyzed, it needs to be unpacked.

Running process

CODESYS Runtime for Raspberry Pi and for Linux traces its process, i.e., CODESYS

Runtime for Raspberry Pi and For Linux debugs itself. This mechanism is used for two

purposes: to intercept system calls (syscalls) and to implement primitive anti-debugging

protection: it is impossible to connect to a running CODESYS Runtime process using third-

party debugging tools, such as gdb, IDA Pro, radare, or strace.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

17
© KASPERSKY, 1997 – 2019

Tracing

01: # strace -f ./codesyscontrol.bin

02: execve("./codesyscontrol.bin", ["./codesyscontrol.bin"], [/* 18 vars */]) = 0

03: brk(NULL) = 0x90ce000

04: uname({sysname="Linux", nodename="raspberrypi", ...}) = 0

05: [...]

06: mprotect(0x8050000, 6495192, PROT_READ|PROT_WRITE|PROT_EXEC) = 0

07: cacheflush(0x8050000, 0x8681bd8, 0, 0x8681bd8, 0x8681828) = 0

08: open("/home/pi/", O_RDONLY) = 3

09: rt_sigaction(SIGTERM, {sa_handler=0x8050a40, sa_mask=[], sa_flags=SA_RESTORER,

sa_restorer=0x76d436b0}, NULL, 8) = 0

10: rt_sigaction(SIGINT, {sa_handler=0x8050a40, sa_mask=[], sa_flags=SA_RESTORER, sa_restorer=0x76d436b0},

NULL, 8) = 0

11: rt_sigaction(SIGPIPE, {sa_handler=SIG_IGN, sa_mask=[], sa_flags=SA_RESTORER, sa_restorer=0x76d436b0},

NULL, 8) = 0

12: rt_sigaction(SIGABRT, {sa_handler=SIG_IGN, sa_mask=[], sa_flags=SA_RESTORER, sa_restorer=0x76d436b0},

NULL, 8) = 0

13: clone(child_stack=NULL, flags=CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD,

child_tidptr=0x76faabf8) = 4290

14: strace: Process 4290 attached

15: [pid 4290] set_robust_list(0x76faac00, 12) = 0

16: [pid 4290] getppid(<unfinished ...>

17: [pid 4289] ptrace(PTRACE_CONT, 4290, NULL, SIG_0 <unfinished ...>

18: [pid 4290] <... getppid resumed>) = 4289

19: [pid 4290] getsid(4289) = 3663

20: [pid 4290] ptrace(PTRACE_TRACEME) = -1 EPERM (Operation not permitted)

21: [pid 4290] getpid() = 4290

22: [pid 4290] kill(4290, SIGKILL) = ?

23: [pid 4289] <... ptrace resumed>) = -1 ESRCH (No such process)

24: [pid 4289] wait4(-1, <unfinished ...>

25: [pid 4290] +++ killed by SIGKILL +++

26: <... wait4 resumed> [{WIFSIGNALED(s) && WTERMSIG(s) == SIGKILL}], 0, NULL) = 4290

27: --- SIGCHLD {si_signo=SIGCHLD, si_code=CLD_KILLED, si_pid=4290, si_uid=0, si_status=SIGKILL,

si_utime=0, si_stime=1} ---

28: ptrace(PTRACE_CONT, 4290, NULL, SIG_0) = -1 ESRCH (No such process)

29: getpid() = 4289

30: kill(4289, SIGKILL) = ?

31: +++ killed by SIGKILL +++

32: Killed

33:

Launching the strace utility with the key –f with the executable file of CODESYS Control

For Raspberry Pi v3.5.14.00

It can be seen in the log for executing the strace utility with the key -f that CODESYS Runtime

changes memory access parameters (line 06), which, as discussed in the previous section,

is necessary to unpack program code.

Next, the clone syscall creates a child process (line 13). The parent process has the identifier

4289. The newly created child process is assigned the identifier 4290. Since the -f key is used,

strace attempts to trace child processes, causing a notification that a child process has been

attached to be shown in line 14.

After that, the parent process attempts to resume the stopped child process by calling the

ptrace function with the argument PTRACE_CONT (line 17). Meanwhile, the child process

executes ptrace with the argument PTRACE_TRACEME (line 20), indicating by this that the

process should be traced by the parent process.

However, the result of executing the function indicates that the process cannot be traced by the

parent process. Due to this, the child process terminates (lines 21:22). After that, the parent

process receives a response from the ptrace function (line 23) and determines that the child

process no longer exists on the system. Next, the parent process makes one more attempt to

call the child process (line 28) and, after failing again to find it, terminates (lines 29:30).

At this point, the strace utility terminates.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

18
© KASPERSKY, 1997 – 2019

Debugging

A similar situation arises when attempting to run the executable file in the gdb debugger.

01: # gdb ./codesyscontrol.bin

02: GNU gdb (Raspbian 7.12-6) 7.12.0.20161007-git

03: Copyright (C) 2016 Free Software Foundation, Inc.

04: License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

05: This is free software: you are free to change and redistribute it.

06: There is NO WARRANTY, to the extent permitted by law. Type "show copying"

07: and "show warranty" for details.

08: This GDB was configured as "arm-linux-gnueabihf".

09: Type "show configuration" for configuration details.

10: For bug reporting instructions, please see:

11: <http://www.gnu.org/software/gdb/bugs/>.

12: Find the GDB manual and other documentation resources online at:

13: <http://www.gnu.org/software/gdb/documentation/>.

14: For help, type "help".

15: Type "apropos word" to search for commands related to "word"...

16: Reading symbols from ./codesyscontrol.bin...(no debugging symbols found)...done.

17: (gdb) set follow-fork-mode child

18: (gdb) run

19: Starting program: /home/pi/ggasss/codesyscontrol.bin

20: [Thread debugging using libthread_db enabled]

21: Using host libthread_db library "/lib/arm-linux-gnueabihf/libthread_db.so.1".

22: [New process 5379]

23: [Thread debugging using libthread_db enabled]

24: Using host libthread_db library "/lib/arm-linux-gnueabihf/libthread_db.so.1".

25:

26: Program terminated with signal SIGKILL, Killed.

27: The program no longer exists.

Starting the gdb debugger with the executable file of CODESYS Control For Raspberry Pi v3.5.14.00

To debug the child process, the relevant mode should be set for gdb: set follow-fork-mode

child (line 17). After that, CODESYS Runtime is executed (line 18). Next, a child process is

created (line 22) and, after some time, the program terminates (lines 26:27).

Consequently, to analyze the executable file, after being unpacked it needs to be brought

to a state in which it can be debugged.

It should be noted that a successfully created file tracing process can be emulated by

specifying a library containing the functions fork, ptrace, getppid and getsid as the

LD_PRELOAD environment variable. However, at this stage this would not be particularly

effective.

Threads

CODESYS Runtime is a multithreaded application. In addition to the running process being

cloned and tracing the child process, the child process creates an enormous number of

threads. Linux system utilities ps and htop get a list of threads created by the process.

01: # ps aux | grep -i codesyscontrol

02: root 5404 10.0 0.7 11184 7448 pts/0 S 04:25 0:02 ./codesyscontrol.bin

03: root 5405 5.6 1.3 14852 13172 pts/0 SLl 04:25 0:01 ./codesyscontrol.bin

04: root 5419 0.0 0.0 4372 540 pts/0 S+ 04:25 0:00 grep --color=auto -i codesyscontrol

05:

06: # htop -p 5405

07:

08: PID USER PRI NI VIRT RES SHR S CPU% MEM% TIME+ Command

09: 5405 root 20 0 14852 13404 2684 S 4.7 1.4 0:54.62 │ └─ ./codesyscontrol.bin

10: 5416 root 20 0 14852 13404 2684 S 0.0 1.4 0:00.32 │ ├─ BlkDrvTcp

11: 5415 root 20 0 14852 13404 2684 S 0.0 1.4 0:00.37 │ ├─ BlkDrvUdp

12: 5414 root 20 0 14852 13404 2684 S 0.0 1.4 0:00.00 │ ├─ GwCommDrvTcp

13: 5413 root 20 0 14852 13404 2684 S 0.7 1.4 0:01.07 │ ├─ OPCUAServer

14: 5412 root 20 0 14852 13404 2684 S 0.7 1.4 0:00.19 │ ├─ WebServerCloseC

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

19
© KASPERSKY, 1997 – 2019

15: 5411 root -70 0 14852 13404 2684 S 0.0 1.4 0:00.00 │ ├─ CAAEventTask

16: 5410 root -95 0 14852 13404 2684 S 2.7 1.4 0:29.29 │ ├─ Schedule

17: 5409 root -69 0 14852 13404 2684 S 0.0 1.4 0:00.00 │ ├─ SchedException

18: 5408 root 20 0 14852 13404 2684 S 1.3 1.4 0:11.77 │ └─ SchedProcessorL

Getting a list of threads created by the process of the executable file of CODESYS Control

for Raspberry Pi v3.5.14.00

After running the ps utility and filtering the result with the grep utility, it can be seen that the

child process has the identifier 5405 (line 03).

Running the htop command for process 5405 (line 06) produces a list of threads created by

the child process (lines 09:18).

Some of the component names from the communication group and the name of the OPC UA

industrial protocol can be recognized in thread names (e.g., the BlkDrvTcp component and the

BlkDrvUdp component).

Network communications

Based on information provided by the netstat utility, CODESYS Runtime listens on the

following ports:

1: # netstat -ntupl | grep -i codesys

2: tcp 0 0 0.0.0.0:11740 0.0.0.0:* LISTEN 5405/./codesyscontr

3: tcp 0 0 0.0.0.0:1217 0.0.0.0:* LISTEN 5405/./codesyscontr

4: tcp 0 0 127.0.0.1:4840 0.0.0.0:* LISTEN 5405/./codesyscontr

5: tcp 0 0 192.168.0.92:4840 0.0.0.0:* LISTEN 5405/./codesyscontr

6: udp 0 0 192.168.0.255:1740 0.0.0.0:* 5405/./codesyscontr

7: udp 0 0 192.168.0.92:1740 0.0.0.0:* 5405/./codesyscontr

List of listening ports opened by the process of the executable file of CODESYS Control

for Raspberry Pi v3.5.14.00

CODESYS Runtime listens both on TCP and on UDP ports. TCP port 11740 (line 2) is used

for TCP communication between CODESYS Runtime and the CODESYS Development

System.

UDP port 1740 (line 7) is used for the same purpose, the difference being that the

communication is carried out over the UDP protocol.

CODESYS Runtime also listens on a broadcast address on UDP port 1740 (line 6). The

purpose of listening on broadcast addresses on the client side is usually to enable servers

to discover these clients, i.e. as a discovery service. TCP port 4840 (lines 4:5) is used

as an OPC UA discovery service.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

20
© KASPERSKY, 1997 – 2019

Information from public sources

Searching for information in public sources is an integral part of research work. We found:

 Removed at the vendor’s request. Contains a technical overview of the CODESYS

Control architecture.

 Removed at the vendor’s request. Contains a large amount of information that is

useful for static analysis, such as the purpose of different functions and their

arguments.

 CODESYS Control adaptation manual (Removed at the vendor’s request). Describes

a basic approach to porting CODESYS Runtime to a device without an OS.

Unfortunately, all the information we were able to find dates back to late 2015. However,

it needed to be analyzed: although the document versions were outdated, they provided

numerous clues that helped us find answers to questions which came up while researching

the protocol used for communication between the CODESYS Development System and

CODESYS Runtime.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

21
© KASPERSKY, 1997 – 2019

Investigating the CODESYS PDU protocol stack

This chapter is devoted to investigating the stack of protocols of CODESYS PDU (Packet Data

Unit). This protocol stack is used for communication between CODESYS network nodes,

including CODESYS Development System and CODESYS Runtime.

The CODESYS PDU protocol stack is based on the ISO/OSI model. Like the ISO/OSI model,

each layer in the CODESYS PDU protocol is responsible for its own area of operations. To

fully understand the operations of the CODESYS PDU protocol, each of its layers must be

studied in detail.

Note: The CODESYS PDU protocol stack was investigated using the "black box" method, so

most of the names of fields and layers used herein are based on their purpose. Therefore, the

names used in the subsequent description may differ from those that are used in public

documentation or that were termed by other researchers.

For example, in one of the researched documents, the following names are used for various

layers of the CODESYS PDU protocol:

 For the first layer: "datagram layer", "Layer 2" or "block driver" (hereinafter referred

to as the Block Driver layer)

 For the second layer: "network layer", "Layer 3" or "router" (hereinafter referred

to as the Datagram layer)

 For the third layer: "protocol layer", "Layer 4" or "channel management" (hereinafter

referred to as the Channel layer)

 For the fourth layer: "application layer", "layer 7" or "application services" (hereinafter

referred to as the Services layer)

Basic description of the protocol

CODESYS PDU (Packet Data Unit) is a protocol stack consisting of four different layers:

 Block Driver layer

 Datagram layer

 Channel layer

 Services layer

The order of bytes in this protocol stack is little endian, but can be changed to big endian if

necessary. Protocol operation is synchronous or asynchronous depending on the protocol layer.

Use of the CODESYS PDU protocol is not limited to network communication. It is also used

for communication over USB, the CAN bus, and serial ports. The CODESYS Runtime

environment always uses the capabilities of the operating system for which it was adapted.

Therefore, the resultant information packet will contain the generated data of CODESYS

Runtime and the data generated by OS drivers for the specific physical interface.

For example, the resultant CODESYS PDU packet sent through a network interface over TCP

will contain two protocol stacks: TCP and CODESYS PDU.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

22
© KASPERSKY, 1997 – 2019

TCP
Stack
Protocols

CODESYS PDU
STACK
PROTOCOLS

14 20 14:20

Ethernet
Header

IP
Header

TCP
Header

CODESYS PDU DATA

Physical
interfaces

Ethernet

TCP
Header

CODESYS PDU DATA

IP

TCP

CODESYS PDU DATA

Block driver
layer

Datagram
layer

Remaining
CODESYS PDU

DATA

Channel layer

Remaining
CODESYS PDU

DATA

Services layer

1 – physical layer

2 – data link layer

3 – network layer

4 – transport layer

5 – data link layer

6 – network layer

7 – transport layer

8 – application
layer

IP
Header

TCP
Header

[]

Block
driver
fields

512 max

Remaining
CODESYS PDU

DATA

Datagram
layer
fields

Channel
layer
fields

Services layer
fields

Ethernet frame

Example use of the TCP and CODESYS PDU protocol stacks in one packet

The capability for communication over physical interfaces is implemented by components of

the Communication – Block Drivers group. In addition, any developer may develop their own

Block Driver and use the CODESYS PDU protocol within it.

This protocol is based on the ISO/OSI model. CODESYS PDU fully excluded the physical

layer from this model, and the session layer and presentation layer were merged with the

application layer. Each specific layer is processed by one component or multiple components

from one group.

Below is a schematic representation of how components are involved in parsing an inbound

packet generated based on the CODESYS PDU protocol.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

23
© KASPERSKY, 1997 – 2019

CmpBlkDrvUdp

CmpRouter

CmpBlkDrvTcpCmpBlkDrvUsb
CmpBlkDrvCan

Client

CmpChannelMgr

CmpChannelServer CmpChannelClient

CmpSecureChannel

CmpSrv

CmpSettings
CmpTraceMgr
CmpUserMgr
PlcShell
CmpDevice
CmpAlarmManager
...

CmpName
ServiceServer

CmpName
ServiceClient

CODESYS PDU

PACKET

Receive

RouterHandleData

NSClient
HandleData

AddrSrvc
HandlePackage

NSServer
HandleData

Additional
Registered

Handler

ChannelMgr
HandleData

Handle
L4Data

NetServer
HandleMetaRequest

NetClient
HandleMetaResponse

Handle
Acknowledge

Handle
KeepAliveHandle

Block

SecChServer
HandleRequest

ServerApp
HandleRequest

Schematic representation of how a CODESYS PDU packet is parsed by components

The cumulative operation of these components determines the capacity of the CODESYS

PDU protocol stack.

This document examines each layer in the CODESYS PDU protocol stack.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

24
© KASPERSKY, 1997 – 2019

Analysis of the protocol stack

Block Driver layer

All useful operation of CODESYS Runtime is the cumulative work of its components. The

components can expand the capabilities of each other. This also works for components that

parse the received packet generated over the PDU protocol.

The main task of components from the Block Drivers group is to create the capability to

communicate over a physical or software interface. Any Block Drivers component is an "input

point" for receiving an information packet and the point from which it is transmitted. Therefore,

these components can add additional fields in the protocol prior to sending a packet.

CmpBlkDrvUdp

CmpRouter

CmpBlkDrvTcpCmpBlkDrvUsb
CmpBlkDrvCan

Client

CODESYS PDU

PACKET

Receive

RouterHandleData

Schematic representation of how a CODESYS PDU packet is parsed by components

at the Block Driver layer

For example, this is how the Block Driver CmpBlkDrvTcp component works. This component

implements communication over the TCP protocol. In each message, CmpBlkDrvTcp adds

two fields, each of which is a 4-byte number:

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

25
© KASPERSKY, 1997 – 2019

Color

fields magic length CODESYS PDU

value
Const

0xe8170100

88

(0x58)
[...]

Example use of two additional fields at the Block Driver layer

 magic refers to the magic number. The constant number 0xe8170100 is inserted and

verified by the CmpBlkDrvTcp component each time the component receives a

network packet.

 length is the cumulative number of bytes in the packet, include the sizes of the magic

and length fields (both fields have a size of 4 bytes each).

Below is a tracing of a call of the Receive() function, which belongs to the CmpBlkDrvTcp

component. The Receive() function processes the magic and length fields.

Call trace:

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

Pseudocode:

001: Removed at the vendor’s request

002: {

[...]

061: Removed at the vendor’s request

[...]

068: Removed at the vendor’s request

069: Removed at the vendor’s request

070: Removed at the vendor’s request

071: Removed at the vendor’s request

072: Removed at the vendor’s request

073: Removed at the vendor’s request

[...]

094: Removed at the vendor’s request

095: Removed at the vendor’s request

096: {

099: Removed at the vendor’s request

100: {

[...]

101: Removed at the vendor’s request

102: {

[...]

144: Removed at the vendor’s request

[...]

148: Removed at the vendor’s request

149: Removed at the vendor’s request

150: Removed at the vendor’s request

151: Removed at the vendor’s request

152: Removed at the vendor’s request

153: Removed at the vendor’s request

[...]

179: Removed at the vendor’s request

180: Removed at the vendor’s request

[...]

196: Removed at the vendor’s request

[...]

206: }

Decompiled pseudocode of the Receive function of the CmpBlkDrvTcp component

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

26
© KASPERSKY, 1997 – 2019

Receiving all data from the network for subsequent processing by the CmpBlkDrvTcp

component occurs in two steps:

1. At the first step, the component obtains the first 8 bytes (line 068) from the data received

over the network through the SysSockRecv function, which was exported by the system

component SysSocket. The maximum number of bytes that can be received is

transmitted in the third argument of the SysSockRecv function. Then the first 4 bytes are

compared with the magic constant (line 099). The second 4 bytes are compared with the

number 520. The number 520 was obtained by adding the maximum possible size of a

packet generated over the CODESYS PDU protocol (512 bytes) to the cumulative size of

the magic and length fields (8 bytes).

2. The remaining data is extracted at the second step. It is expected that the data size will be

equal to the difference between the value of the length field and the cumulative size of the

magic and length fields (line 144).

Then the CmpBlkDrvTcp component transfers management of the RouterHandleData

function (line 196), which is registered by the CmpRouter component, to the Datagram layer.

Please bear in mind that the magic and length fields will be absent when communicating over

the UDP protocol.

Color

fields CODESYS PDU

value [...]

Example absence of additional fields at the Block Driver layer

The UdpReceiveBlock() function of the CmpBlkDrvUdp component is analogous to the

Receive() function of the CmpBlkDrvTcp component.

Call trace:

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

Pseudocode:

001: Removed at the vendor’s request

002: {

019:

[...]

047: Removed at the vendor’s request

[...]

055: Removed at the vendor’s request

056: {

[...]

064: Removed at the vendor’s request

[...]

071: }

072: Removed at the vendor’s request

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

27
© KASPERSKY, 1997 – 2019

073: {

[...]

080: Removed at the vendor’s request

081: Removed at the vendor’s request

083: }

084: }

[...]

111: Removed at the vendor’s request

[...]

Decompiled pseudocode of the UdpReceiveBlock function of the CmpBlkDrvUdp component

The UdpReceiveBlock() function does not perform any verifications of the received data.

Moreover, the CmpBlkDrvUdp component has another special feature. Namely, the

UdpReceiveBlock() function listens for broadcast messages (line 047). If such data was not

detected, the component attempts to count the data that was sent specifically to it (line 64).

If data was received in one of these cases, the CmpBlDrvUdp component calls the

RouterHandleData function for further processing (line 111).

Datagram layer

The Datagram layer is the next layer in the CODESYS PDU protocol stack. The main purpose

of this layer is to route packets, detect nodes in the CODESYS network, and transmit data to

the next layer. The main component in this layer is CmpRouter. The CmpNameServiceClient

and CmpNameServiceServer components are auxiliary components.

CmpRouter

CmpChannelMgr

CmpName
ServiceServer

CmpName
ServiceClient

PACKET
from Block Driver Layer

RouterHandleData

NSClient
HandleData

AddrSrvc
HandlePackage

NSServer
HandleData

Additional
Registered

Handler

ChannelMgr
HandleData

Schematic representation of how a CODESYS PDU packet is parsed by components at the Datagram layer

Components of the Block Drivers group are required to call the RouterHandleData function,

which operates at the Datagram layer. In function call arguments, components transmit the

received data.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

28
© KASPERSKY, 1997 – 2019

Color

fields

Blk_driver_

fields

(CmpBlkDrv

Tcp)

magic

hop_info_

byte
packet_info

hop_count

(5 bit)

header_

length

(3 bit)

priority

(2 bit)

signal

(1 bit)

type_

address

(1 bit)

length_

data_

block

(4 bit)

value [...]
197

(0xc5)
0xd 0x3

0x1

(NORMAL)

0x0

(NO_SIGNAL)

0x0

(DIRECT)
0x0

Color

fields service_id message_id

lengths sender Receiver

receiver_

length

sender_

length
port address port Address

value 0x40 0x00 0x5 0x3
11740

(2ddc)

192.168.0.88

(c0a80058)

11743

(2ddf)

192.168.0.33

(c0a80021)

800000

Color

Fields Padding Remaining data

value 0x0000 [...]

Utilized fields at the Datagram layer

In terms of traffic, this function processes the following fields and data:

 magic refers to the magic number of the packet generated over the CODESYS PDU

protocol. The size of this field is one byte, and it is inserted by the CmpRouter

component.

 hop_info refers to the bit structure, which consists of two fields: 5-bit hop_count field

and 3-bit header_length field:

a. The hop_count field is responsible for the possible number of transmissions of

a packet received over the network. Each time one CODESYS network node

receives a packet and redirects it to another CODESYS network node,

it decrements the value of the hop_count field. If a node received a packet but is

not its final recipient and the value of the hop_count field is equal to 0, the node

will discard this packet. Essentially, this field protects a network that has

CODESYS nodes from an endless forwarding of a packet.

b. The header_length field indicates the number of bytes until the next field with the

data size (lengths). When the value of the header_length field is added to its

position in the packet, it is expected that the position on the lengths field will be

obtained.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

29
© KASPERSKY, 1997 – 2019

 packet_info refers to packet settings. This field also represents the bit structure.

a. The first two bits are the priority field. It designates the priority of the processed

packet. The following numerical values are used to designate priority: 0 – low,

1 – normal, 2 – high, 3 – emergency

c. The following signal bit is used by the CmpRouter component as the returned

packet processing status in which you can indicate errors.

d. The type_address field indicates the type of transmitted address. This field is

necessary so that the CmpRouter component can understand the contents of the

sender and receiver fields. There are two values for the type_address field:

0 – full address, 1 – relative address

e. The last field length_data_block indicates the maximum size of data that can be

accepted by a recipient.

 service_id refers to the ID of the service. Indicates which specific server must

process the received data. CODESYS Runtime contains and identifies the following

services:

a. The service with an ID of 1 for a request and 2 for a response is the address

service. This service is used to detect nodes that are "alive" in the network and to

build an information network from these nodes. A node in this network serves as

a participant with CODESYS Runtime or CODESYS Development System

running.

b. The service with an ID of 3 for a request and 4 for a response is the name service.

This service is used to receive information about a node.

c. The service with an ID of 64 (0x40) for both a request and response is the channel

service. This service is used for querying the server and the communication channel

manager.

 message_id refers to the ID of the message. This value is indicated by the sender

and is used to identify the message. Normally CmpRouter sends a 4-bit value of the

current time as the message ID. This provides for a unique message ID.

 lengths refers to the sizes of the receiver and sender fields. The lengths field is a

bit structure in which the most significant 4 bits contain a value corresponding to half

of the number of bytes in the receiver field, while the least significant 4 bits contain a

value corresponding to half of the number of bytes in the sender field. In other words,

the number of bytes in the receiver field and in the sender field will be two times

more than those specified in the lengths field. For example, the value of the most

significant 4 bits of the lengths (0x53) field is equal to 5 for the examined packet. This

means that the total number of bytes for the receiver field will be 10.

 sender refers to the address for which the message is intended.

 receiver refers to the address to which the response to the message must be sent.

 The padding field is added to the end of the packet. This field is optional.

The sender and receiver fields have their own data format that depends on the utilized Block

Driver component. For example, CmpBlkDrvTcp expects the full network address of the node

and number of the network port in these fields. In other words, the bytes of the receiver field

(2ddcc0a80058) actually contain port 11740 (2ddc) and recipient address 192.168.0.88

(c0a80058).

CmpBlkDrvUdp uses a different format. It uses a relative address instead of a full address,

and it uses one byte instead of two bytes for the port value. This byte for the port indicates the

port index. CmpBlkDrvUdp identifies four port indexes: 0, 1, 2, 3. Each index corresponds to

one UDP port: 0 – 1740, 1 – 1741, 2 – 1742, 3 – 1743. The relative network address is the last

byte in numerical format of the physical address.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

30
© KASPERSKY, 1997 – 2019

Color

fields

lengths Sender receiver

padding

(optional)
Remaining data

receiver_

length

sender_

length

port_

index

relative

address

port_

index

relative_

address

value 0x1 0x3 0
88

(0x58)
3

33

(0x21)

800000

0x0000 [...]

Example contents of the Sender and Receiver fields when using the CmpBlkDrvUdp component

Therefore, the bytes value of the sender field (0058) will contain the port 1740 (the value of

the port_index field is equal to 0x0) and the address 192.168.0.88 (0x58 is the last byte of

the address, while the first three bytes are extracted from the interface address). The recipient

will await a response at port 1743 (the value of the port_index field is equal to 0x3) and at the

address 192.168.0.33 (0x21).

The purpose and format of all other data in the packet depends on the service (service_id) for

which this packet is intended. If this ID is equal to 1, 2, 3 or 4, the handler remains the

CmpRouter component or its auxiliary components CmpNameServiceClient and

CmpNameServiceServer. If the ID is equal to 64 (0x40), all other data is transmitted to the

CmpChannelManager component.

Based on the sender field, the CmpRouter component determines if the packet is intended

for itself or if it needs to be forwarded to another node. In the first case, the CmpRouter

component first decrements the value of hop_count in the packet, then sends it as is to the

node specified in the sender field. In the second case, the CmpRouter component processes

the packet and returns the result to the address specified in the receiver field. A packet that

was intended for the node is processed by the HandleLocally function.

Call trace:

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

Pseudocode:

001: Removed at the vendor’s request

002: {

[...]

044: Removed at the vendor’s request

045: Removed at the vendor’s request

046: {

[...]

051: Removed at the vendor’s request

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

31
© KASPERSKY, 1997 – 2019

[...]

060: }

061: Removed at the vendor’s request

062: {

063: Removed at the vendor’s request

064: {

[...]

069: Removed at the vendor’s request

[...]

078: }

079: Removed at the vendor’s request

080: {

[...]

086: Removed at the vendor’s request

[...]

096: Removed at the vendor’s request

097: }

098: }

099: Removed at the vendor’s request

100: {

101: Removed at the vendor’s request

102: Removed at the vendor’s request

103: Removed at the vendor’s request

111: [...]

119: Removed at the vendor’s request

120: }

121: Removed at the vendor’s request

122: {

123: Removed at the vendor’s request

124: {

125: Removed at the vendor’s request

126: Removed at the vendor’s request

127: Removed at the vendor’s request

[...]

142: }

143: }

144: Removed at the vendor’s request

145: }

Decompiled pseudocode of the HandleLocally function of the CmpRouter component

The HandleLocally function uses the value of the service_id field to determine which specific

handler must be queried:

 For a value that is equal to 1 or 2: the AddrSrvcHandlePackage function (line 103).

This is a handler of the address service.

 For a value that is equal to 3: the NSServerHandleData function (line 51). This is the

handler of the name service, which processes incoming requests. In other words,

it operates as a server.

 For a value that is equal to 4: the NSClientHandleData function (line 69). This is

a handler of the name service, which processes the results of completed requests.

In other words, it operates as a client.

 For a value that is equal to 0x40: the ChannelMgrHandleData function (line 86).

This is a handler of the channel service.

If a suitable handler was not found for the received service_id, a search is performed among

the additional handlers registered by the RouterRegisterProtocolHandler function. If one is

found, it is queried (lines 125:127).

01: Removed at the vendor’s request

02: {

[...]

14: Removed at the vendor’s request

15: {

16: Removed at the vendor’s request

17: {

18: Removed at the vendor’s request

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

32
© KASPERSKY, 1997 – 2019

19: {

20: Removed at the vendor’s request

21: }

22: Removed at the vendor’s request

23: {

24: Removed at the vendor’s request

25: Removed at the vendor’s request

26: Removed at the vendor’s request

[...]

39: Removed at the vendor’s request

40: }

Decompiled pseudocode of the RouterRegisterProtocolHandler function

The RouterRegisterProtocolHandler function takes the service_id and handler as

arguments (line 1). This function does not let you register the handler (line 16) for the following

IDs: 1, 2, 3, 4 and 64 (0x40). If a handler is not set for a specific ID (line 18), the handler will

be added to the global dictionary of handlers (s_protocolHandlers), where the key for the

handler is the first argument of service_id (line 24).

Next we will examine handlers of CODESYS Runtime system services, namely the handlers

of the address service and handlers of the name service.

The handler of the channel service is examined in the chapter titled "Channel layer".

Address service

The handler of the address service uses the service_id to identify possible commands: the

"request" command with service_id 1 and the "response" command with service_id 2.

The AddrSrvcHandlePackage function is the handler.

Call trace:

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

Pseudocode

01: Removed at the vendor’s request

02: {

[...]

23: Removed at the vendor’s request

24: {

25: Removed at the vendor’s request

26: Removed at the vendor’s request

27: }

28: Removed at the vendor’s request

29: {

30: Removed at the vendor’s request

31: Removed at the vendor’s request

32: {

33: Removed at the vendor’s request

34: {

[...]

75: Removed at the vendor’s request

76: }

77: }

78: }

[...]

98: }

Decompiled pseudocode of the AddrSrvcHandlePackage function

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

33
© KASPERSKY, 1997 – 2019

The "request" command with an ID of 1 (line 23) is sent by a CODESYS network node to

notify the other nodes about its existence. This request can be continually monitored in the

traffic over a broadcast address: it is sent at the same frequency by all CODESYS network

nodes to a broadcast address.

Broadcast notifications of CODESYS network nodes

If there is a parent node among the CODESYS network nodes, it learns about the existence

of the node that sent the request. This same request can be sent by the parent node. If such

a request is received by child objects, they notify the parent node about their existence.

Additional fields are not used for this request.

The "response" command with an ID of 2 (line 28) is usually sent by a parent node. This

command is used to build a CODESYS information network. It uses the following fields:

Fields
size
(byte)

Type

version_major 1 Uint8_t

version_minor 1 Uint8_t

Unused 1 Uint8_t

address_len 1 Uint8_t

address 30 Uint8_t[]

subnet_id 4 Uin32_t

subnet_params 1 Uint8_t

parent_subnet_params 1 Uint8_t

Unused или reserved 2 Uint16_t

 version_major is a field that is used to designate the version of the CODESYS

information network that will be generated. For the CODESYS PDU protocol, the

value of version_major is always equal to 1 (line 75 of the decompiled pseudocode

of the AddrSrvcHandlePackage function).

 version_minor is the field indicating the utilized version of the command.

It determines the additional fields in the command and in the response. For example,

if the field has a positive value, the parent_subnet_params field will be used in the

packet.

 address_len indicates the number of bytes of the parent_address field that needs

to be processed. The total number of bytes is multiplied by two.

 address refers to the address of the parent node.

 subnet_id refers to the ID of the generated subnet.

 subnet_params and parent_subnet_params are the settings of the current subnet

and the subnet of the parent node.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

34
© KASPERSKY, 1997 – 2019

The CODESYS network node that receives such a message sets the source of this message

as the parent node (provided that no parent node was previously specified).

Name service

Messages that are intended for the name service are processed by the auxiliary components

CmpNameServiceClient and CmpNameServiceServer. Messages of the name service are

also divided into a "request" command and "response" command. Incoming "requests" from

other nodes are processed by the CmpNameServiceServer component. Requests that were

sent by the CODESYS Runtime node are processed as "responses" by the

CmpNameServiceClient component.

The common header of name service messages (name_service_header) uses the following

fields:

Fields
size
(byte)

Type

Subcmd 2 Uint16_t

Version 2 Uint16_t

Message_id 4 Uint32_t

Message_data n Uint8_t[n]

 subcmd refers to the ID of the command that the name service needs to execute.

 version refers to the command version number. This field determines the availability

of additional fields in the message_data field that are typical for the specified version

of the command.

 message_id refers to the ID of the message. This value is returned in a response.

A numerical identifier of the current time is used to create the value of this field.

 message_data refers to command fields whose format is determined by the

command (subcmd).

The CmpNameServiceServer component exports the NSServerHandleData function. The

NSServerHandleData function serves as the handler of requests sent to the name service

from other nodes.

Call trace:

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

Pseudocode:

01: Removed at the vendor’s request

02: {

[...]

09: Removed at the vendor’s request

10: Removed at the vendor’s request

11: Removed at the vendor’s request

12: Removed at the vendor’s request

13: Removed at the vendor’s request

14: Removed at the vendor’s request

15: {

[...]

18: Removed at the vendor’s request

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

35
© KASPERSKY, 1997 – 2019

19: }

20: Removed at the vendor’s request

21: {

[...]

24: Removed at the vendor’s request

25: }

26: Removed at the vendor’s request

27: {

28: Removed at the vendor’s request

29: }

30: Removed at the vendor’s request

31: }

Decompiled pseudocode of the NSServerHandleData function of the CmpNameServiceServer component

The NsServerHandleData handler determines the two possible IDs of the subcmd field, and

queries the corresponding auxiliary handler for each of them:

 For the ID 0xc202 (line 20), this is the HandleResolveAddrReq handler (line 18).

This is a request to receive information about a node. A response to this request uses

the value of service_id 4 and will be processed by the NsClientHandleData function.

 For the ID 0xc201 (line 14), this is the HandleResolveNameReq handler (line 18).

This request is analogous to a request with the ID 0xc202, with the only difference

being that the node name is transmitted in the body of the request. If the transmitted

node name does not match the name of the node that received the request, the node

ignores the request. A response to this request uses the value of service_id 4 and will

be processed by the NsClientHandleData function.

The CmpNameServiceClient component exports the NSClientHandleData function that

serves as the handler of responses to name service requests received from nodes. The

response to the request uses the common message header (name_service_header).

Depending on the value specified in the version field, the response may differ. For a version

field that is equal to 0x103, the response will contain the following fields:

Fields
size
(byte)

Type

max_channels 2 Uint16_t

byte_order 1 Uint8_t

Unknown 1 Uint8_t

node_name_length 2 Uint16_t

device_name_length 2 Uint16_t

vendor_name_length 2 Uint16_t

target_type 4 Uint32_t

target_id 4 Uint32_t

target_version 4 Uint32_t

Node_name node_name_length Uint8_t[node_name_length]

device_name device_name_length Uint8_t[device_name_length]

vendor_name vendor_name_length Uint8_t[vendor_name_length]

 max_channels refers to the number of simultaneously supported communication

channels. This number is regulated by the settings of the CmpChannelMgr

component. This same communication channel is used at the Channel layer of the

CODESYS PDU protocol stack.

 byte_order indicates the byte order used in the protocol. As mentioned earlier,

CODESYS PDU uses the little endian byte order by default. However, the byte order

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

36
© KASPERSKY, 1997 – 2019

can be changed. A value of the byte_order field equal to 1 indicates the use of little

endian byte order.

 Unknown means that we were unable to determine the purpose of the field during our

research.

 node_name_length refers to the size of the node_name field.

 device_name_length refers to the size of the device_name field.

 vendor_name_length refers to the size of the vendor_name field.

 target_type refers to the type of device.

 target_id refers to the device ID.

 target_version refers to the version of the device.

 node_name refers to the network name of the device.

 device_name refers to the name of the device.

 vendor_name refers to the name of the organization that developed the device or

implemented CODESYS Runtime into the device.

If the value 0x400 was indicated in the version field of the request, the response will contain

the following fields: address of the parent node, license number, and type of Block Driver

component.

Channel layer

The channel layer is the next layer in the CODESYS PDU protocol stack.

CmpChannelMgr

CmpChannelServer CmpChannelClient

CmpSecureChannel

PACKET
from Block Driver Layer

ChannelMgr
HandleData

Handle
L4Data

NetServer
HandleMetaRequest

NetClient
HandleMetaResponse

Handle
Acknowledge

Handle
KeepAlive

Handle
Block

SecChServer
HandleRequest

Schematic representation of how a CODESYS PDU packet is parsed by components at the Channel layer

A channel is a mechanism of communication between nodes of a CODESYS network that

guarantees synchronization of communication, verification of the transmitted data integrity,

notification of message delivery, and transmission of a large amount of data.

The main component at this layer is the CmpChannelMgr component (Component Channel

Manager). This component is the communication channel manager. It tracks synchronization

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

37
© KASPERSKY, 1997 – 2019

of communication between nodes and the integrity of received data, or transfers management

to the channel server (the CmpChannelServer component) or a client of communication

channels (the CmpChannelClient component).

The CmpChannelServer component is a channel server. It is responsible for the following:

 Creating an accumulation buffer for received and sent messages

 Creating and closing communication channels

 Delivering information about a communication channel

 Closing channels whose time to live expired or that haven't been accessed for a long

time

The CmpChannelClient component is a client of channels. It generates the necessary

requests and handles the processing of responses from the channel server.

The CmpChannelMgr component exports the ChannelMgrHandleData function that is

queried by the CmpRouter component if the value of the service_id field is equal to 0x40

at the Datagram layer.

Call trace:

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

Pseudocode:

001: Removed at the vendor’s request

[...]

079: Removed at the vendor’s request

080: {

[...]

086: Removed at the vendor’s request

[...]

096: Removed at the vendor’s request

097: }

[...]

Locations for transferring management of the ChannelMgrHandleData function

A common header (channel_common_header) is used for the channel layer. It contains the

following fields:

Fields
size
(byte)

Type

package_type 1 Uint8_t

Flags 1 Uint8_t

packet_data n Uint8_t[n]

 The package_type field determines the type of packet. If the most significant bit is set

in the value of this field, the packet is a command for the channel server. If the most

significant bit is absent, the packet is intended for the channel manager.

 The flags field has a varying purpose depending on the package_type field.

 The packet_data field contains the other packet data that is determined by the

packet_type field.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

38
© KASPERSKY, 1997 – 2019

The ChannelMgrHandleData function exported by the CmpChannelMgr component is the

handler at the Channel layer. Operations of this function can be divided into three categories:

operations with the channel server, operations with the channel client, and operations with the

channel manager.

Call trace:

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

Pseudocode:

01: Removed at the vendor’s request

02: {

[...]

20: Removed at the vendor’s request

21: {

22: Removed at the vendor’s request

23: {

[...]

27: Removed at the vendor’s request

28: }

29: }

30: Removed at the vendor’s request

31: {

[...]

35: Removed at the vendor’s request

36: }

37: }

 [...]

43: Removed at the vendor’s request

44: }

45: Removed at the vendor’s request

[...]

48: }

Fragment of the decompiled pseudocode of the ChannelMgrHandleData function of the CmpChannelMgr

component

Operations with the channel server occur in the NetServerHandleMetaRequest handler.

A response from the channel server is processed by the channel client in the

NetClientHandleMetaResponse handler (line 35) and (line 27).

Operations with the channel manager occur in the HandleL4Data function (line 43).

Commands for the communication channel server

We first examine the group of commands for working directly with the communication channel

server. This group contains commands for opening and closing the channel, and for receiving

information about the communication channel server.

Call trace:

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

39
© KASPERSKY, 1997 – 2019

Pseucode:

01: Removed at the vendor’s request

02: {

[...]

27: Removed at the vendor’s request

[...]

35: Removed at the vendor’s request

36: }

[...]

48: }

Fragment of the decompiled pseudocode of the ChannelMgrHandleData function

The command handler for the communication channel server is the

NetServerHandleMetaRequest function, and the command handler for a client is the

NetClientHandleMetaResponse function. The first function processes incoming requests,

which means it implements the server side. The second function processes responses to

requests, which means it implements the client side. Both of these functions will be examined

below.

Call trace:

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

Pseudocode:

01: Removed at the vendor’s request

02: {

03: Removed at the vendor’s request

04:

05: Removed at the vendor’s request

06: Removed at the vendor’s request

07: Removed at the vendor’s request

08: Removed at the vendor’s request

09: {

10: Removed at the vendor’s request

11: Removed at the vendor’s request

12: Removed at the vendor’s request

13: Removed at the vendor’s request

14: Removed at the vendor’s request

15: Removed at the vendor’s request

16: Removed at the vendor’s request

17: Removed at the vendor’s request

18: Removed at the vendor’s request

19: }

20: Removed at the vendor’s request

21: }

Fragment of the decompiled pseudocode of the NetServerHandleMetaRequest function

The NetServerHandleMetaRequest function (line 01) identifies three possible IDs of

a command (command_id) to be processed:

 0xC2 (line 16) for the GET_INFO command. The HandleInfoReq function (line 17)

serves as the command handler.

 0xC3 (line 10) for the OPEN_CHANNEL command. The HandleOpenChannelReq

function (line 11) serves as the command handler.

 0xC4 for the CLOSE_CHANNEL command. The HandleCloseChannelReq function

(line 14) serves as the command handler.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

40
© KASPERSKY, 1997 – 2019

Call trace:

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

Pseudocode:

23: Removed at the vendor’s request

24: {

25: Removed at the vendor’s request

26:

27: Removed at the vendor’s request

28: Removed at the vendor’s request

29: Removed at the vendor’s request

30: Removed at the vendor’s request

31: {

32: Removed at the vendor’s request

33: }

34: Removed at the vendor’s request

35: {

36: Removed at the vendor’s request

37: }

38: Removed at the vendor’s request

39: }

Fragment of the decompiled pseudocode of the NetClientHandleMetaResponse function

The client function NetClientHandleMetaResponse (line 23) identifies only two possible

commands for a client:

 0xC3 (line 30) for the OPEN_CHANNEL command. The HandleOpenChannelResp

function (line 32) serves as the command handler.

 0xC4 (line 34) for the CLOSE_CHANNEL command. The HandleCloseChannelResp

function (line 36) serves as the command handler.

A channel layer message that is intended for the server and client of a channel has its own

header (channel_header). The following fields are used in the channel_header:

Fields
size
(byte)

Type

command_id 1 Uint8_t

Flags 1 Uint8_t

version 2 Uint16_t

checksum 4 Uint32_t

command_data n Uint8_t[n]

 The command_id field designates the ID of the command and indicates whether the

message is a request or a response to a request. A set 7th bit indicates that the

message is a response. The other first 6 bits designate the command ID. The

following IDs of commands are available for the channel server:

o 0xc2 (GET_INFO) refers to an information command for obtaining the number

of simultaneously supported channels on the node.

o 0xc3 (GET_CHANNEL) refers to a request to create a communication channel

between nodes.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

41
© KASPERSKY, 1997 – 2019

o 0xc4 (CLOSE_CHANNEL) refers to a request to close a communication channel

between nodes.

 During our research, we did not detect the use of a value set in the flags field.

 The version field indicates the ID of the command version. Depending on this field,

additional fields may be used in the body of the command message.

 The remaining data of a command is determined by the command (command_id).

For example, for a request to open a communication channel, the server function

NetServerHandleMetaRequest processes the following fields and data:

Color

fields

datagram_

layer_

fields

command_id Flags version checksum command_data

value [...]

195

(0xc3)

GET_CHANNEL

0 0x101 0x516eecbd [...]

Utilized fields at the Channel layer

 command_id with the ID 0xc3 means that the message is a request to open

a communication channel (GET_CHANNEL).

 The flags field will be ignored when the GET_CHANNEL command is processed.

 The version field determines the availability of additional fields in a message.

For the current value, two additional fields will be used.

 checksum refers to the packet checksum. The CRC32 algorithm is used for the

checksum.

 command_data is a field that is examined below.

The following fields and data is used for a GET_CHANNEL command request:

Color

fields

Datagram_

layer_

fields

channel_header message_id receiver_buffer_size Unknown

value [...] [...] 0x3de5ede2 0x1f4000 0x5

Utilized fields of a request with the GET_CHANNEL command

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

42
© KASPERSKY, 1997 – 2019

 The datagram_layer_fields field refers to fields of the Datagram layer.

 The channel_header field refers to the header of a command sent to the channel

server.

 Message_id refers to the ID of the message. A 4-bit representation of the current time

is normally used as the value of this field.

 Receiver_buffer_size refers to the maximum permissible amount of data that can be

accumulated by the recipient in the communication channel.

In response to this request, the command_id field of the channel_header sets the 7th bit.

The command_data fields in the response to the request will be as follows:

Color

fields

Datagram_

layer_

fields

channel_header message_id Reason channel_id

Reveiver_

buffer_

size

Unknown

value [...] [...] 0xe2ede53d
0x00

(OK)
0x08 0x20760100 0x52d00

Utilized fields of a response to the GET_CHANNEL command

 The datagram_layer_fields field refers to fields of the Datagram layer.

 The channel_header field is the header of a command sent to a channel client.

 Message_id refers to the returned message ID. This value is equivalent to the value

that was received in the request.

 Reason refers to the command processing status.

 Channel_id refers to the ID of the open communication channel.

 Receiver_buffer_size refers to the maximum permissible amount of data that can be

accumulated by the recipient in the communication channel.

Other commands use their own set of fields in the command_data field. One exclusion is the

GET_INFO command. To receive the result of this command, all you have to do is send a

filled channel_header that specifies the ID of the GET_INFO command. The response will

contain one field:

Fields
size
(byte)

Type

Max_channels 4 Uint32_t

 The Max_channels field contains the maximum number of simultaneously supported

communication channels.

A request to close a channel (CLOSE_CHANNEL) uses the following fields in

command_data:

Fields
size
(byte)

Type

channel_id 2 Uint16_t

Reason 2 Uint16_t

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

43
© KASPERSKY, 1997 – 2019

 channel_id refers to the ID of the channel that needs to be closed.

 reason refers to the reason for closing the channel.

The node that received this request does not return any response.

Commands for the communication channel manager

The second examined group of commands works directly with the communication channel

manager. An open communication channel is required for querying any command from this

group. This group contains commands for transferring data to the next layer, and notifications

about its receipt and support for the created communication channel.

Commands for the communication channel manager use the common header

(channel_manager_header) with the following fields:

Fields
size

(byte)
Type

package_type 1 Uint8_t

Flags 1 Uint8_t

packet_data N Uint8_t[n]

 packet_type refers to the ID of the packet type. The following types of packets and

their purposes are identified:

o BLK refers to the transfer of data for the next layer in the protocol stack.

o ACK refers to a notification about data receipt.

o KEEPALIVE refers to keeping a communication channel active.

 Flags are additional settings or indicators that are specific to the packet type

(packet_type).

 packet_data refers to the specific data for the packet type (packet_type).

The HandleL4Data function processes all commands of the examined group.

Call trace:

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

Pseudocode:

01: Removed at the vendor’s request

02: {

[...]

17:

20: Removed at the vendor’s request

21: Removed at the vendor’s request

22: Removed at the vendor’s request

23: Removed at the vendor’s request

24: {

25: Removed at the vendor’s request // ACK

26: Removed at the vendor’s request

27: Removed at the vendor’s request

28: Removed at the vendor’s request

29: Removed at the vendor’s request

30: Removed at the vendor’s request

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

44
© KASPERSKY, 1997 – 2019

31: Removed at the vendor’s request // KEEPALIVE

32: Removed at the vendor’s request

33: Removed at the vendor’s request

34: Removed at the vendor’s request // BLK

35: Removed at the vendor’s request

36: Removed at the vendor’s request

37: Removed at the vendor’s request

38: Removed at the vendor’s request

39: Removed at the vendor’s request

[...]

43: }

[...]

62: Removed at the vendor’s request

63: {

[...]

69: Removed at the vendor’s request

72: Removed at the vendor’s request

73: }

74: Removed at the vendor’s request

75: {

81: Removed at the vendor’s request

82: }

[...]

94: } }

Fragment of the decompiled pseudocode of the HandleL4Data function

The HandleL4Data function (line 01) identifies three possible IDs of packet_type for

processing BLK (0x1), ACK (0x2), KEEPALIVE (0x3).

Each packet type as specific type of data body. For instance, the BLK packet type uses

the following fields in a message body:

Color

fields

Datagram_

layer_

fields

packet_type flags channel_id Blk_id Ack_id

Remaining_

data_

size

Checksum
Remaining_

data

value [...]
0x01

(BLK)
0x81

32

(0x20)
0x02 0x1 0x5c 0x89 [...]

Utilized fields for the BLK packet type at the Channel layer

 Packet_type refers to the BLK (0x1) packet type, which indicates data transfer.

 Flags refers to packet flags for the BLK packet type. The specified value 0x81 means

the following:

o The node that received this packet serves as the server (most significant bit),

and the data of the request is the first in the transmission (least significant bit).

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

45
© KASPERSKY, 1997 – 2019

o If the least significant bit is not set, the message contains a continuation of the

data of the last packet. The least significant bit of this packet indicates that the

packet is sending data to the next layer for the first time.

 Channel_id refers to the ID of the open channel used for data transfer.

 Blk_id refers to the ID of the current BLK message. This ID is incremented each time

by the side that initiated the start of communication over the channel.

 Ack_id refers to the ID of the last ACK message. This ID is changed by the

responding side each time. After receiving the last packet for data transfer to a service

at the application layer, the responding side changes the value of this ID to Blk_id.

 Remaining_data_size refers to the size of the expected data contained by the

remaining_data field.

 Checksum is the checksum of the data contained in the remaining_data field.

The CRC32 algorithm is used to calculate the checksum.

If a BLK packet contained data whose size does not exceed the maximum size of a

CODESYS PDU packet (512 bytes), the response will contain a modified value of the flags

field in which the most significant bit will not be set, meaning that the recipient is now the

client. The value of the ack_id field will be changed to the value of the blk_id field.

Despite the fact that the maximum size of a CODESYS PDU packet is 512 bytes, very large-

sized data can be transmitted over the CODESYS PDU protocol. This is possible through the

accumulation of incoming data on the receiving side. The receiving side understands that data

needs to be accumulated due to the values in the flags field. The checksum and

remaining_data_size fields indicate when the packet contains the last data for a command.

The ACK message type is used for notifying the sending side that a portion of the data was

received and the next portion of data is anticipated. This message uses the following fields:

Fields
size
(byte)

Type

Channel_id 2 Uint16_t

Blk_id 4 Uint32_t

 Channel_id is the ID of the channel used to receive the BLK packet.

 Blk_id refers to the value of the Blk_id field from the BLK packet that was received

by the receiving side.

The KEEPALIVE message type is used to keep the open communication channel active.

If the channel manager is not receiving messages, it will soon close the channel. The

message timeout before the channel is closed is regulated by the component settings.

The KEEPALIVE message type uses one field:

Fields
size
(byte)

Type

Channel_id 2 Uint16_t

 Channel_id is the ID of the channel whose time needs to be extended.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

46
© KASPERSKY, 1997 – 2019

Services layer

The next layer in the CODESYS PDU protocol stack is the Services layer.

CmpSecureChannel

CmpSrv

CmpSettings
CmpTraceMgr
CmpUserMgr
PlcShell
CmpDevice
CmpAlarmManager
...

SecChServer
HandleRequest

ServerApp
HandleRequest

PACKET
From Channel layer

Schematic representation of how a CODESYS PDU packet is parsed by components at the Services layer

The Services layer represents a combination of several layers of the ISO/OSI model: session

layer, presentation layer, and application layer. The main task of this layer is to query the

requested service and transmit its operating settings. Additional tasks of the Services layer

include encoding, decoding, encrypting, and decrypting data transmitted at this layer. Another

additional task is support of sessionization on a device.

The latest implementations of CODESYS Runtime support data encryption at the Services

layer. The CmpSecureChannel component encrypts and decrypts data at this layer. This

occurs in the SecChServerHandleRequest function that is exported by it. If data was

successfully decrypted or if it was not initially encrypted, it is transmitted to the

ServerAppHandleRequest function that was exported by the CmpSrv component.

If there is no CmpSecureChannel component, the CmpChannelServer component

independently transfers management to the ServerAppHandleRequest function.

The format of the message header (protocol_header) for an encrypted or unencrypted

message is as follows:

Fields
size
(byte)

Type

protocol_id 2 Uint16_t

header_size 2 Uint16_t

cmd_group 2 Uint16_t

subcmd 2 Uint16_t

session_id 4 Uint32_t

content_size 4 Uint32_t

additional_data 4 Uint32_t

protocol_data content_size Uint8_t[content_size]

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

47
© KASPERSKY, 1997 – 2019

 protocol_id refers to the ID of the utilized protocol. This ID indicates which protocol

handler modified the data and which protocol should be used to transmit data to

services. There are two system IDs of the protocol:

o HeaderTagProtocol with the ID 0xcd55. This protocol ID indicates that data

of the protocol_data field contains tags.

o SecureProtocol with the ID 0x7557 refers to the protocol for secure data

transfer. This ID indicates that data of the protocol_data field needs to be

decrypted.

 Header_size refers to the size of the protocol_header. The value of this field does

not contain the sizes of previous fields and the current field.

 service_group refers to the ID of the queried service. If the most significant bit is set

in the ID, this means that the message is a response from a service. Based on the

service ID, the following components are identified as a service:

o CmpAlarmManager – 0x18;

o CmpApp – 0x2;

o CmpAppBP – 0x12;

o CmpAppForce – 0x13;

o CmpCodeMeter – 0x1d;

o CmpCoreDump – 0x1f;

o CmpDevice – 0x1;

o CmpFileTransfer – 0x8;

o CmpIecVarAccess – 0x9;

o CmpIoMgr – 0xb;

o CmpLog – 0x5;

o CmpMonitor – 0x1b;

o CmpOpenSSL – 0x22;

o CmpSettings – 0x6;

o CmpTraceMgr – 0xf;

o CmpTraceMgr – 0xf;

o CmpUserMgr – 0xc;

o CmpVisuServer – 0x4;

o PlcShell – 0x11;

o SysEthernet – 0x7.

 service_id refers to the ID of the command. This ID determines what exactly the

service must do.

 session_id refers to the ID of the session. It contains the value of the received

session or empty session. This value is checked by protocol handlers and by most

commands that require elevated user privileges.

 content_size refers to the size of data in the protocol_data field.

 additional_data refers to the field used for additional data.

 protocol_data refers to data generated over the utilized protocol (protocol_id).

If a message was encrypted by the SecureProtocol, almost all fields of the protocol_header

will contain zero bytes. An exception would be the header_size and content_size fields,

which operate normally, and the protocol_data field that contains an encrypted

protocol_header. After the protocol_data field is decrypted, the decrypted protocol_header

will be processed by the HeaderTagProcol protocol handler.

If the message was not encrypted and the HeaderTagProcol protocol was used, the

protocol_data field will contain tags.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

48
© KASPERSKY, 1997 – 2019

A user can register their handler for protocol_id using the ServerRegisterProtocolHandler

function that is exported by the CmpSrv component:

01: Removed at the vendor’s request

02: {

[...]

06:

07: Removed at the vendor’s request

08: Removed at the vendor’s request

09: Removed at the vendor’s request

10: Removed at the vendor’s request

11: {

12: Removed at the vendor’s request

13: Removed at the vendor’s request

14: }

15: Removed at the vendor’s request

16: {

17: Removed at the vendor’s request

18: {

19: Removed at the vendor’s request

20: Removed at the vendor’s request

21: }

22: }

23: Removed at the vendor’s request

24: Removed at the vendor’s request

25: Removed at the vendor’s request

26: Removed at the vendor’s request

27: Removed at the vendor’s request

28: ++Removed at the vendor’s request

29: Removed at the vendor’s request

30: }

Decompiled pseudocode of the ServerRegisterProtocolHandler function

The ServerRegisterProtocolHandler function is quite simple, and its algorithm consists of

the following:

1. At lines 10 through 12, the function compares each of the registered handlers for the

protocol_id field with the handler that is expected to be registered. If this handler is

detected among the registered handlers, the function returns the corresponding status

(line 13).

2. Then it attempts to find an unoccupied cell for registering the handler (lines 15:21).

3. It registers the new handler in an unoccupied cell (line 25:26).

For the service_id field, one component can register only one handler simultaneously.

To register a handler for service_id, the ServerRegisterServiceHandler function must be

queried. Its algorithm is analogous to the algorithm of the ServerRegisterProtocolHandler

function. Therefore, we will not examine it here.

For example, for a non-encrypted request to complete authentication, the

ServerAppHandleRequest function processes a packet as follows:

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

49
© KASPERSKY, 1997 – 2019

Color

Fields datagram_layer_fields channel_layer protocol_id header_size service_group service_id

Value [...] [...] 0xcd55 0x10
0x1

(CmpDevice)

0x2

(AUTH)

Color

Fields Session_id protocol_data_size Additional_data protocol_data

Value 0x11 0x48 0x0 [...]

Example contents of fields at the Services layer

 Protocol_id contains the ID 0xcd55. This means that the HeaderTagProtocol

protocol was used: data of the protocol_data field is not encrypted, and the

service_group and service_id fields contain the values of the requested service.

 Header_size contains the value 0x10. This means that the size of the utilized header

(protocol_header) is 16 (0x10) bytes.

 Service_group indicates the ID of the service that was registered by the CmpDevice

component.

 Service_id indicates the ID of the requested command for the service. The value 2

indicates that the service registered by the CmpDevice component needs to execute

the AUTH command.

 Protocol_data_size indicates that the data size of the protocol_data field is 72

(0x48) bytes.

 The additional_data field was not used.

Tags

The last examined layer in the CODESYS PDU protocol stack is tags.

CmpSettings
CmpTraceMgr
CmpUserMgr
PlcShell
CmpDevice
CmpAlarmManager
...

Schematic representation of how a CODESYS PDU packet is parsed by components at the Services layer

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

50
© KASPERSKY, 1997 – 2019

Tags refer to the interface for transmitting settings for services. The service on the client side

knows how data needs to be formulated so that the service on the server side correctly

receives the settings of this data.

Types of tags

Tags are transmitted in the protocol_data field of the protocol_header. They can be of two

types: a data tag or a parent tag.

Both types of tags have an identical structure, but use different sizes for the first two elements

of the structure of fields:

Fields

Parent tag Data tag

size
(byte)

Type
Size
(byte)

Type

tag_id 2 Uint16_t 1 Uint8_t

tag_size 2 Uint16_t 1 Uint8_t

additional_data 0:10 Uint8_t[0:9] 0:10 Uint8_t[0:9]

tag_data Tag_size Uint8_t[tag_size] Tag_size Uint8_t[tag_size]

 tag_id refers to the tag ID. The IDs of a parent tag and data tag are distinguished by

the value of the most significant bit. If the value of the most significant bit is set, this

means that the tag is a parent tag and all other data is typical for a parent tag.

Otherwise the tag is a data tag, and its data contains the final settings for the service.

 tag_size refers to the size of the data. This field determines the amount of data in the

tag_data field. In addition, the value of the most significant bit of the tag_size field

determines the availability of the additional field additional_data: if the value of the

most significant bit is set, the additional_data field is available.

 additional_data is an additional field. It has a dynamic size, which cannot be larger

than 10 bytes. The end of this field is determined by a zero byte.

 tag_data refers to data of the parent tag or data of the data tag.

Data extracted by a service from a data tag is converted into a specific type of data. For

example, a tag containing 4 bytes in the tag_data field may be converted to one of the

numerical data types by the service. The variable type is not transmitted in the tag structure.

However, may times it was observed that CODESYS Runtime services transmit a group of

tags from which one tag may contain a value, the second tag type ID, and the third size.

These bundles of tags are usually combined under one parent tag.

A parent tag is used for linking several types into one logical element. An example of this type

of linking was presented above. Another example is the linking of tags with a user name and

password that are used for authentication. A data tag containing a user name and a data tag

containing a password may be combined into one parent tag.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

51
© KASPERSKY, 1997 – 2019

Processing tags

Let's examine how a specific service handler extracts settings from received tags based on an

example packet containing tags for user authentication. In this case, tags will be analyzed as

follows:

Color

fields

datagram_

layer_

fields

channel_

layer_

fields

Services_

layer_

fields

Data_tag_1 Data_tag_2 Parent_tag_1 Data_tag_3 Data_tag_4

Example parsing of the contents of the protocol_data field for tags in an authentication request

There is a protocol_data field inside the services_layer_fields header. If this field is broken

down into tags, it has 4 data tags and 1 parent tag.

The hierarchy of tags will be as follows:

 Data_tag_1

 Data_tag_2

 Parent_tag_1

o Data_tag_3

o Data_tag_4

Data_tag_1 and Data_tag_2 are at the same level as Parent_tag_1.

Data_tag_3 and Data_tag_4 are within the parent tag.

Interaction with tags occurs through the utilization of a multitude of API functions, which include

functions for interaction with incoming tags with the BTagReader (Binary Tag Reader) prefix,

and functions for interaction with outgoing tags with the BtagWriter (Binary Tag Writer) prefix.

Main API functions for interaction with tags:

For incoming tags

1. BTagReaderInit refers to initialization of the structure for reading received data.

The data read structure stores the following elements: data, current position in the data,

possible end position of data, and data size. In most cases, all functions for interaction

with incoming tags use only the pointer to the current position in data.

This is how it moves through tags in pure data.

2. BTagReaderGetTagId refers to getting the tag ID.

3. BTagReaderGetContent refers to getting the tag data.

4. BTagReaderMoveNext refers to moving to the next tag.

5. BTagReaderSkipContent refers to moving to the end of data of the current tag.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

52
© KASPERSKY, 1997 – 2019

For outgoing tags

1. BTagWriterInit refers to initialization of the structure for writing outgoing data. The data

write structure stores the following elements: initially received data, pointer to the end of

data, and current size of data. All functions for interaction with outgoing tags change all

elements of the structure.

2. BTagWriterStartTag refers to opening a new tag for outgoing data. Opening a tag must be

accompanied by a query of the function for closing the tag – BTagWriterEndTag.

3. BTagWriterAppendBlob refers to adding data for a created tag.

4. BTagWriterEndTag refers to closing the created data tag.

5. BTagWriterFinish refers to finishing writing tags as outgoing data. Essentially, this function

verifies that all added tags have a valid structure and were closed by the

BTagWriterEndTag function.

The packet has a services_layer_fields header in which the value of the service_group

field is equal to 1. This ID is registered by the CmpDevice component. During its initialization,

the component registers the DeviceServiceHandler function as a service by settings its ID

equal to 1:

Call trace:

 Removed at the vendor’s request

Pseudocode:

1: Removed at the vendor’s request

2: {

3: Removed at the vendor’s request

4: }

Decompiled pseudocode of the DeviceSrvInitComm function of the CmpSrv component

In this packet, the command specified in the command ID field (service_id) is equal to 2. The

DeviceServiceHandler function identifies 9 commands that include a command with the ID 2

(line 254):

001: Removed at the vendor’s request

002: {

[...]

133: Removed at the vendor’s request

134: {

135: Removed at the vendor’s request

[...]

254: Removed at the vendor’s request

[...]

399: Removed at the vendor’s request

[...]

411: Removed at the vendor’s request

[...]

473: Removed at the vendor’s request

[...]

548: Removed at the vendor’s request

[...]

611: Removed at the vendor’s request

[...]

624: Removed at the vendor’s request

[...]

695: Removed at the vendor’s request

[...]

763: }

Fragment of the decompiled pseudocode of the DeviceServiceHandler function

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

53
© KASPERSKY, 1997 – 2019

The DeviceServiceHandler function executes a command with the ID 2 in three steps:

1. Extracts the settings and sets the local values.

2. Executes commands with the local values and the received settings.

3. Returns the result of command execution.

001: Removed at the vendor’s request

002: {

[...]

129: Removed at the vendor’s request

130: Removed at the vendor’s request

131: Removed at the vendor’s request

132: Removed at the vendor’s request

133: Removed at the vendor’s request

134: {

[...]

254: Removed at the vendor’s request

[...]

266: Removed at the vendor’s request

267: Removed at the vendor’s request

268: {

269: Removed at the vendor’s request

270: Removed at the vendor’s request

271: {

272: Removed at the vendor’s request

273: Removed at the vendor’s request

274: Removed at the vendor’s request

275: Removed at the vendor’s request

276: Removed at the vendor’s request

277: Removed at the vendor’s request

278: {

279: Removed at the vendor’s request

280: Removed at the vendor’s request

281: {

282: Removed at the vendor’s request

283: }

284: Removed at the vendor’s request

285: {

286: Removed at the vendor’s request

287: Removed at the vendor’s request

288: }

289: Removed at the vendor’s request

290: {

291: Removed at the vendor’s request

292: }

293: Removed at the vendor’s request

294: Removed at the vendor’s request

295: Removed at the vendor’s request

296: }

297: Removed at the vendor’s request

298: Removed at the vendor’s request

299: Removed at the vendor’s request

300: Removed at the vendor’s request

301: Removed at the vendor’s request

302: Removed at the vendor’s request

303: Removed at the vendor’s request

304: }

305: Removed at the vendor’s request

306: Removed at the vendor’s request

307: Removed at the vendor’s request

308: }

[...]

315: Removed at the vendor’s request

316: {

317: Removed at the vendor’s request

318: Removed at the vendor’s request

[...]

327: }

330: Removed at the vendor’s request

331: Removed at the vendor’s request

332: {

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

54
© KASPERSKY, 1997 – 2019

333: Removed at the vendor’s request

334: }

335: Removed at the vendor’s request

336: {

337: Removed at the vendor’s request

338: Removed at the vendor’s request

339: {

[...]

341: Removed at the vendor’s request

342: Removed at the vendor’s request

343: Removed at the vendor’s request

344: Removed at the vendor’s request

345: Removed at the vendor’s request

346: Removed at the vendor’s request

347: Removed at the vendor’s request

348: Removed at the vendor’s request

349: }

[...]

357: Removed at the vendor’s request

[...]

365: Removed at the vendor’s request

366: }

367: Removed at the vendor’s request

[...]

376: Removed at the vendor’s request

377: Removed at the vendor’s request

378: Removed at the vendor’s request

379: Removed at the vendor’s request

380: Removed at the vendor’s request

[...]

389: Removed at the vendor’s request

390: Removed at the vendor’s request

391: Removed at the vendor’s request

392: Removed at the vendor’s request

393: Removed at the vendor’s request

394: Removed at the vendor’s request

395: Removed at the vendor’s request

396: Removed at the vendor’s request

397: Removed at the vendor’s request

398: Removed at the vendor’s request

[...]

761: }

762: Removed at the vendor’s request

763: }

Fragment of the decompiled pseudocode of the DeviceServiceHandler function

The algorithm for a command with the ID 2 for each step is as follows:

Settings extraction step

1. Line 131 involves initialization of the structure for writing outgoing data (writer), will

be used at the results return step. Line 132 involves initialization of the structure for

reading incoming data (reader), which is used at the current step.

2. There is an attempt to recognize tags within incoming data (line 266). If successful, the tag

ID is extracted from the first tag (line 269).

3. Depending on the tag ID received at the previous step, tag data is written to the

corresponding variables. For the ID 0x23 (line 272), data is written to the pulChallenge

variable (line 273). For the ID 0x22 (line 298), data is written to the pulCrypeType variable

(line 299). If a tag ID is equal to 0x81 (line 275), the tag is a parent tag and it is searched

for data tags (line 279) with the ID of 16 (line 280). Data from the found tags is written to

the user_name variable (line 282). From the found tag with the ID 17 (line 284), data is

written to the encrypted_password variable (line 286).

4. Line 315 involves verifying that the variables necessary for executing the command have

been filled with data from tags.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

55
© KASPERSKY, 1997 – 2019

Command execution step

1. The received encrypted_password, pulCrypeType and pulChallenge variables are

used in the function for decrypting the UserMgrDecryptPassword (line 318). The

decrypted password will be written to the decrypted_password variable.

2. The user_name variable will be used in the function for checking the existence of

FindUser users. This function searches for an entry regarding users in the database.

3. If an entry is found about a user that has a name from the user_name variable, the user's

password is checked to see if it matches the decrypted password that was saved to the

decrypted_password variable.

4. If the decrypted password matches the password from the database, the current user is

checked for permissions to a "Device" object (line 357).

5. If the user has permissions to a "Device" object, the generated session ID (ulSessionId

variable) is assigned to the current user (line 365) and to the utilized communication

channel (line 367).

Results return step

1. A tag with the ID 0x82 (line 376) is opened for outgoing data. This tag is a parent tag, and

within it the tags with an ID of 0x20 (opening at line 377 and closing at line 379), 0x24

(opening at line 389 and closing at line 391) and 0x21 (opening at line 392 and closing at

line 394) are sequentially opened and closed.

2. The following values are written to data tags: with the ID 0x20 – value of the command

execution status (line 378); with the ID 0x24 – value of device settings (line 390); with the

ID 0x21 – value of the generated session (line 393).

3. At line 395, the parent tag with the ID 0x82 is closed and writing of outgoing data is

finished (line 396).

If a user entry is not found, permissions are insufficient, passwords do not match, or data is

incorrect, the corresponding response is generated at the results return step.

In response to a request for CODESYS Runtime authentication with the correct user

authentication data, the following packet is returned:

Color

fields

datagram_

layer_

fields

channel_

layer_

fields

Services_

layer_

fields

Parent_tag Tag with status Tag with settings Tag with session_id

Example parsing of the contents of the protocol_data field for tags in a response to an authentication request

Consequently, we can unequivocally determine which tags with which IDs will be used to

transmit specific settings for services. The main settings in this response will be contained in

a tag with the ID 0x21. This tag will contain the session ID that will later be used as the value

of the session_id field at the Services layer.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

56
© KASPERSKY, 1997 – 2019

Detected vulnerabilities and potential attacks

After we created the conditions for conducting a static and dynamic analysis and peeled back

the layers of the protocol, we were able to search for vulnerabilities.

This chapter will examine several detected logical vulnerabilities that could be exploited to

take over a device on which CODESYS Runtime software is installed.

Based on the results of our research, we also plan to publish an article devoted to an

automatic search of network binary vulnerabilities in conditions when the source code is not

available.

Description of the testing bench

To demonstrate the exploitation of vulnerabilities, we will use a testing bench consisting of the

following network nodes:

1. Attacking computers with network addresses 192.168.0.2 and 192.168.0.30. The attacking

nodes are designated as Attacker №1 and Attacker №2.

2. Raspberry Pi device running CODESYS Control For Raspberry PI that has the network

address 192.168.0.91. The abbreviated name Client №1 will be used hereinafter for this

node.

3. Raspberry Pi device running CODESYS Control For Raspberry PI that has the network

address 192.168.0.92. The abbreviated name Client №2 will be used hereinafter for this

node.

4. Computer with CODESYS Development System installed and the network address

192.168.0.39. The abbreviated name IDE will be used for this node.

Attacker 1
 192.168.0.2

Client 2
192.168.0.92

Client 1
192.168.0.91

Attacker 2
192.168.0.30

IDE
192.168.0.39

Test bench schematic

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

57
© KASPERSKY, 1997 – 2019

Attacks at the Datagram layer

The CODESYS PDU protocol is based on the ISO/OSI model. Therefore, we can presume

that, along with the concept of the ISO/OSI model and its stack of protocols, the CODESYS

PDU protocol also inherited the shortcomings of this model and the security threats

corresponding to these shortcomings.

IP spoofing

Each protocol in the ISO/OSI model has its own set of threats. IP spoofing refers to an attack

on the ISO/OSI model at the network layer consisting of forging the address of the message

source (IP SRC) for the purpose of concealing the sender's address. The victims who receive

such a packet will process the request and return a response to the source address indicated

in the field (IP SRC).

Attacker
192.168.0.101

Victim
192.168.0.104

Server
192.168.0.4

IP SRC = 192.168.0.4
IP DST = 192.168.0.104

REQUEST

IP SRC = 192.168.0.104
IP DST = 192.168.0.4

RESPONSE

Schematic of an IP spoofing attack for the ISO/OSI model

The sender's address is concealed for the purpose of deceiving security systems and

hindering discovery of the attack.

Attacks analogous to IP spoofing can be conducted over the CODESYS PDU protocol.

The following two attacks on the CODESYS PDU protocol will be examined:

1. Attack aimed at concealing the address of the message source.

2. Attack aimed at taking control over the existing channel of communication between nodes

of the CODESYS network.

Attack aimed at concealing the address of the message source

The CmpRouter component processes fields at the Datagram layer. The header of the

datagram layer contains fields for addressing, packet parameterization, channel layer service

ID, and others. Among the addressing fields is the receiver field, which indicates to which

address a response to a request should be sent.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

58
© KASPERSKY, 1997 – 2019

Color

fields

Sender Receiver

Port

index
Address

Port

index
Address

value
0

(1740)

0x5c

(192.168.0.92)

2

(1742)

0x27

(192.168.0.39)

Location of the receiver field in the header of the Datagram layer

As evident from the example data stream presented above, the receiver field contains the

value of the last bit of the numerical representation of the IDE node address (0x27) and the

value of the port index equal to 2. Both of these values match the numerical value of the

message source address (the src field, which is equal to 192.168.0.39) and the value of the

port from which the request was sent (the src port field, which is equal to 1742).

By changing the value in the receiver field, an attacker can implement a classic IP spoofing

attack.

Attacker #1
 192.168.0.2

Client #2
192.168.0.92

Client #1
192.168.0.91

Attacker #2
192.168.0.30

CODESYS PDU REQUEST
Sender 2:0x27

Receiver 0:0x5c

CODESYS PDU RESPONSE
Sender 0:0x5c

Receiver 2:0x27

IDE
192.168.0.39

Schematic of a classic IP spoofing attack over the CODESYS PDU protocol

The CODESYS PDU protocol has another architectural vulnerability that could be exploited

to implement an advanced IP spoofing attack. It is based on routing, which is one of the

responsibilities of the CmpRouter component.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

59
© KASPERSKY, 1997 – 2019

Color

fields

Sender Receiver

Port

index
Address

Port

index
Address

value
0

(1740)

0x5c

(192.168.0.92)

2

(1742)

0x27

(192.168.0.39)

Location of the sender field in a header of the Datagram layer

The sender field indicates the address of the node for which the packet is intended.

The CmpRouter component redirects a received CODESYS PDU packet to a different node

in the network corresponding to the one indicated in the sender field if the value of the sender

field does not match the address of the node that received the packet.

By manipulating the sender field, an attacker can modify the IP spoofing attack by adding

an intermediate node. The intermediate node will serve as a proxy for redirecting a malicious

packet to other nodes in the CODESYS network.

Attacker #2
192.168.0.30

CODESYS PDU REQUEST
Sender 0:0x5c

Receiver 2:0x27

CODESYS PDU RESPONSE
Sender 2:0x27

Receiver 0:0x5c

IDE
192.168.0.39

CODESYS PDU REQUEST
Sender 0:0x5c

Receiver 2:0x27

Client #1
192.168.0.91

Client #2
192.168.0.92

Attacker #1
 192.168.0.2

Schematic of a modified IP spoofing attack over the CODESYS PDU protocol

The finishing stroke of the IP spoofing attack over the CODESYS PDU protocol will be the

concealed receipt of a response to the redirected request. The receipt of the response can be

concealed by specifying a broadcast address as the response recipient in the message.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

60
© KASPERSKY, 1997 – 2019

Color

fields Sender Receiver

Port

index

Address Port

index

Address

value 0

(1740)

0x5c

(192.168.0.92)

0

(1740)

0xff

(192.168.0.255)

Example packet in which a broadcast address is indicated as the value for the receiver field

in the Datagram layer header

After receiving a request in which the last byte of a broadcast address (0xff) is indicated as the

response recipient in the receiver field, the node will return a response to the broadcast

address.

Example of a node sending a response to a broadcast address

The attacker can conceal the address of its node by receiving responses of the victim's nodes

from the broadcast node.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

61
© KASPERSKY, 1997 – 2019

Attacker #2
192.168.0.30

CODESYS PDU REQUEST
Sender 0:0x5c

Receiver 0:0xFF

IDE
192.168.0.39

CODESYS PDU REQUEST
Sender 0:0x5c

Receiver 0:0xFF

Client #1
192.168.0.91

Attacker #1
 192.168.0.2

Client #2
192.168.0.92

BROADCAST
CODESYS PDU RESPONSE

Sender 0:0xFF
Receiver 0:0x5c

Schematic representation of an IP spoofing attack over the CODESYS PDU protocol

with concealed receipt of a response to a request

By automating the exploitation of detected vulnerabilities and implementing the described

scheme of attack, an attacker could make it more difficult for analysts to investigate an attack.

Attack aimed at taking control of an existing channel of communication between nodes of the CODESYS
network

In light of the fact that the CmpRouter component performs its functions based only on data in

the CODESYS PDU packet, an attacker can infiltrate the existing communications between

nodes. However, because each layer of the CODESYS PDU protocol is dependent on the

previous layer, control of the last layer (Services layer) can be taken over only by taking

control at all previous layers.

To interact at the Channel layer, network participants have to establish a communication

channel. To query most services at the Services layer, one node must complete authentication

on the other node and receive a session ID. The value of the channel ID is transmitted in the

header at the Channel layer. The value of the session ID is transmitted in the header of the

Services layer.

Taking control in the CODESYS PDU protocol can be divided into several tasks:

1. Receiving addresses of communication participants

2. Receiving the channel ID

3. Receiving the BLK and ACK ID

4. Receiving the session ID

The first task can be accomplished using the standard capabilities of the CODESYS PDU

protocol. The third is accomplished by finding out IDs.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

62
© KASPERSKY, 1997 – 2019

To accomplish the second and fourth tasks, you must know and exploit several detected

vulnerabilities.

If an attacker has detected the vulnerabilities that we found and can automate an attack,

he could implement the following attack scenario:

REQUEST OPEN_CHANNEL: Sender 91, Receiver 39

Attacker #2
192.168.0.30

RESPONSE OPEN_CHANNEL: Sender 39, Receiver 91
Channel_id 4

REQUEST PROGRAM_STOP: Sender 91, Receiver 39, CH 4, BLK 2, ACK 1, Session 0x3456789a
Reason: NO_REASON

Attacker #1
 192.168.0.2

RESPONSE PROGRAM_STOP: Sender 39, Receiver 91, CH:4, BLK 2, ACK 2, Session 0x3456789a
STATUS: OK

Client #2
192.168.0.92

REQUEST AUTH: Sender 91, Receiver 39, Channel_id 4, BLK 1, ACK 0
Username : Administrator, Password: password

RESPONSE AUTH: Sender 39, Receiver 91, Channel_id 4, BLK 1, ACK 1
Session 0x3456789a

Client #1
192.168.0.91

IDE
192.168.0.39

Scenario of attack aimed at intercepting control

The attack algorithm may be as follows:

1. OPEN_CHANNEL request:

The IDE node requests open channels on the Client #1 node.

2. OPEN_CHANNEL response:

The Client #1 node opens a communication channel for the IDE node and sends it the

channel ID (channel_id) equal to 4.

3. AUTH request:

The IDE node is authenticated on the Client #1 node by sending the password and user

name.

4. AUTH response:

The Client #1 node searches the database for an entry on the received user name. After

finding the entry and comparing the password, Client #1 returns a session ID equal to

0x3456789a to the IDE node.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

63
© KASPERSKY, 1997 – 2019

5. PROGRAM_STOP request:

An attacker from the Attacker #1 node sends a message with the command

PROGRAM_STOP to the Client #1 node. This packet must indicate an incremental BLK

ID from the last message of the IDE node and an ACK ID analogous to the ID in the last

message of the IDE node. The IDs of the session (session_id) and channel (channel_id)

match the IDs used in the communication between the nodes.

6. PROGRAM_STOP response:

The Client #1 node processes the request containing the PROGRAM_STOP command

received from the Attacker #1 node as if the request came from the IDE node. This is

because the received ID of the communication channel (channel_id) matches the existing

ID of the communication channel between the IDE node and Client #1 node, the received

BLK and ACK IDs are correct for the utilized channel, and the session ID is available. As

a result, the Client #1 node returns a positive response about stopping the program.

Setting an arbitrary parent node

Network traffic interception is one of the threats for the data link layer of the ISO/OSI model.

An attack that implements the threat of network traffic interception is called a "Man-in-the-

middle" (MITM) attack.

In the ARP protocol, which operates at the data link layer of the ISO/OSI model, one of the

implementations of a man-in-the-middle attack is ARP poisoning. This attack consists of

modifying the ARP table on the victim's computer by sending specially generated ARP

responses to network nodes of victims. After modifications are made to the ARP table, all

outbound and inbound traffic of the victim will pass through the network address of the

attacker.

Schematic of an ARP poisoning attack over the ARP protocol. Step 1 is modification of the ARP table

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

64
© KASPERSKY, 1997 – 2019

Attacker
IP : 192.168.0.2

MAC: 11:11:11:11:11:11

Victim #1
IP: 192.168.0.92

MAC: 33:33:33:33:33:33

Victim #1
IP: 192.168.0.91

MAC: 22:22:22:22:22:22

Schematic of an ARP poisoning attack over the ARP protocol. Step 2 is the modified route

of network traffic

CODESYS Runtime does not have an ARP table. However, it has a mechanism for changing

the route of a CODESYS network for which the CmpRouter component is responsible.

The address of any node in a CODESYS network consists of the addresses of all previous

parent nodes and its own address as the terminal address. A CODESYS network node

generates and remembers its full address after receiving a series of requests for the address

service. After generating an address, the node will send all outgoing packets to the source of

the request, assuming that it is the parent node.

Color

Network address 192.168.0.255

(Broadcast)

192.168.0.39 192.168.0.92 192.168.0.30

Host IDE Client #1 Attacker #2

Implementing an attack by setting an arbitrary parent node

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

65
© KASPERSKY, 1997 – 2019

The figure above shows 5 packets and the contents of the last packet. Below is a description

of each of the packets and the sequence of actions taken by CODESYS network nodes on our

test bench:

1. The IDE node sends packet №1 to a broadcast address. This packet contains a request

to receive information about nodes in the network. The request is intended for the name

service.

2. The Client #1 node receives packet №1 from a broadcast address. When processing the

request, the node extracts from the receiver field the address of the node to which a

response must be sent. The value of the receiver field indicates the address of the IDE

node. Therefore, the Client #1 node responds with packet №2 sent to the IDE node. This

packet contains information about the Client #1 node.

3. Attacker #2 sends packet №3 to the broadcast address. This packet contains a request

for the address service to change the parent address (service_id 2). Packet №3 is

received by the Client #1 node. After processing packet №3, the Client #1 node modifies

the route for its network interface and sets the address of Attacker #2 as the parent node.

4. The IDE node sends a request (packet №4) to the broadcast address to receive

information about nodes in the network. Packet №4 is identical to packet №1.

5. The Client #1 node receives packet №4 from the broadcast address. When processing

this request, the node generates a response and sends it in packet №5. This packet is

sent to the address of the parent node that was assumed by the Attacker #2 node instead

of the address of the IDE node specified in the receiver field.

Despite the fact that the Client #1 node received both requests to receive information from the

same address but it sent responses to different addresses, the contents of these responses

are identical. The values of the sender and receiver fields were also unchanged. In other

words, the node with the modified route and the set parent node awaits delivery of the packet

sent from its parent node, therefore the node does not change the values of the receiver and

sender fields.

This means that an attacker can change the route of CODESYS network traffic without any

privileges at the node running CODESYS Runtime. By making his machine the parent node,

the attacker can infiltrate already existing or future traffic by implementing a man-in-the-middle

attack.

Attacker #1
 192.168.0.2

Attacker #2
192.168.0.30

BROADCAST
REQUEST ADDR_SERVICE

 RESPONSE ADDR_SERVICE
Sender 3:39

Receiver 0:92

Client #2
192.168.0.92

RESPONSE ADDR_SERVICE
Sender 3:39
Receiver 0:91

Client #1
192.168.0.91

IDE
192.168.0.39

Schematic of a modified route of network traffic after setting an arbitrary parent node

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

66
© KASPERSKY, 1997 – 2019

Vulnerability in the channel layer. Predictability of the channel ID

Initially we assumed that the value of a created communication channel ID is always

incremented by four from the value of the last communication channel ID. This was indicated

by the log returned by the program:

Fragment of the CODESYS Runtime software log

To confirm this hypothesis, we researched the HandleOpenChannelReq function, which

serves as the handler at the channel layer for the command to open channels

(OPEN_CHANNEL). This function belongs to the CmpChannelServer component.

Call trace:

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

Pseudocode:

001: Removed at the vendor’s request

002: {

[...]

064: Removed at the vendor’s request

065: {

[...]

086: Removed at the vendor’s request

087: {

[...]

094: Removed at the vendor’s request

095: Removed at the vendor’s request

096: Removed at the vendor’s request

097: Removed at the vendor’s request

[...]

128: Removed at the vendor’s request

129: Removed at the vendor’s request

130: Removed at the vendor’s request

131: Removed at the vendor’s request

132: Removed at the vendor’s request

133: Removed at the vendor’s request

134: Removed at the vendor’s request

135: }

[...]

148: Removed at the vendor’s request

149: Removed at the vendor’s request

150: Removed at the vendor’s request

151: Removed at the vendor’s request

152: Removed at the vendor’s request

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

67
© KASPERSKY, 1997 – 2019

153: Removed at the vendor’s request

154: {

155: Removed at the vendor’s request

156: Removed at the vendor’s request

157: }

158: }

Decompiled pseudocode of the HandleOpenChannelReq function of the CmpChannelServer component

While researching the code of the HandleOpenChannelReq function, we discovered that

each new ID of the channel actually depends on the value of the previous communication

channel ID. However, it is incremented not by a fixed value equal to four, but by the number of

simultaneously supported communication channels (line 94).

The event processing function of the CmpChannelServer component assigns the number of

simultaneously supported channels in the global variable s_iMaxServerChannels.

001: Removed at the vendor’s request

002: {

[...]

008:

009: Removed at the vendor’s request

010: {

011: Removed at the vendor’s request

[...]

023: Removed at the vendor’s request

024: Removed at the vendor’s request

025: Removed at the vendor’s request

026: Removed at the vendor’s request

027: Removed at the vendor’s request

028: Removed at the vendor’s request

029: {

030: Removed at the vendor’s request

031: Removed at the vendor’s request

032: {

033: Removed at the vendor’s request

034: Removed at the vendor’s request

035: }

036: }

037: Removed at the vendor’s request

038: Removed at the vendor’s request

039: Removed at the vendor’s request

040: Removed at the vendor’s request

041: Removed at the vendor’s request

042: Removed at the vendor’s request

[...]

124: Removed at the vendor’s request

125: }

Disassembled code of the CmpChannelServer_hook function

Line 24 of the pseudocode of the CmpChannelServer_hook function shows that the value of

the global variable s_iMaxServerChannels is regulated by the settings of the configuration

file. If a section named CmpChannelServer and a setting named MaxChannels are missing,

the default value, which is equal to four, is set in the s_iMaxServerChannels variable.

An attacker can obtain the value of the s_iMaxServerChannels variable by contacting the

communication channel manager using the GET_INFO command at the Channel layer or

using any command for the name service at the Datagram layer. Privileges are not required

for execution of these commands.

Call trace:

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

68
© KASPERSKY, 1997 – 2019

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

 Removed at the vendor’s request

Pseudocode:

01: Removed at the vendor’s request

02: {

03: Removed at the vendor’s request

04:

05: Removed at the vendor’s request

06: Removed at the vendor’s request

07: Removed at the vendor’s request

08: Removed at the vendor’s request

09: Removed at the vendor’s request

10: }

Disassembled pseudocode of the HandleInfoReq function

The HandleInfoReq function processes the GET_INFO command for the communication

channel manager at the Channel layer. The global variable s_iMaxServerChannels will be

written to the last two bytes of the response (line 08).

Depending on the settings used in the configuration file, CODESYS Runtime may fail to

process information requests at the Datagram layer and at the Channel layer. However, an

attacker can always send multiple paired requests to open and close a channel. The

difference between two consecutively received IDs of channels will unequivocally identify the

number of simultaneously supported channels on a CODESYS Runtime node.

Vulnerabilities of the Services layer

Vulnerabilities in the authentication system

This chapter will examine two detected vulnerabilities in the authentication system, namely the

vulnerability in session ID generation and in password decryption. Exploitation of the first

vulnerability can lead to prediction of a session ID. Exploitation of the second vulnerability can

lead to decryption of an intercepted password.

Vulnerability in the predictability of session ID generation

For most services, the node must complete authentication. A request to complete

authentication is processed by the DeviceServiceHandler function, which is registered by the

CmpDevice component as a service with the ID of 1. The DeviceServiceHandler function

was examined as an example of tag processing in the chapter titled "Processing tags".

When the DeviceServiceHandler function processes an incoming request containing a

command whose ID is equal to 2, the DeviceServiceHandler function transfers management

to the ServerGenerateSessionId function (examined below).

001: Removed at the vendor’s request

002: {

[...]

129: Removed at the vendor’s request

130: Removed at the vendor’s request

131: Removed at the vendor’s request

132: Removed at the vendor’s request

133: Removed at the vendor’s request

134: {

[...]

254: Removed at the vendor’s request

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

69
© KASPERSKY, 1997 – 2019

[...]

262: Removed at the vendor’s request

263: Removed at the vendor’s request

[...]

365: Removed at the vendor’s request

366: }

367: Removed at the vendor’s request

[...]

389: Removed at the vendor’s request

390: Removed at the vendor’s request

391: Removed at the vendor’s request

392: Removed at the vendor’s request

393: Removed at the vendor’s request

394: Removed at the vendor’s request

395: Removed at the vendor’s request

396: Removed at the vendor’s request

397: Removed at the vendor’s request

398: Removed at the vendor’s request

[...]

761: }

762: Removed at the vendor’s request

763: }

Fragment of the decompiled pseudocode of the DeviceServiceHandler function of the CmpDevice

component

A response to a successful authentication request contains a data tag with the ID 0x21

(line 392). The data of this tag contains a generated ID for the created session (line 393).

The session ID itself is created within the HandleLoginSessionId function even before the

received authentication data is verified (line 263). The generated ID is returned in the

ulSessionId variable.

01: Removed at the vendor’s request

02: {

[...]

09: Removed at the vendor’s request

10: Removed at the vendor’s request

11: Removed at the vendor’s request

12: {

13: Removed at the vendor’s request

14: Removed at the vendor’s request

15: }

16: Removed at the vendor’s request

17: {

18: *Removed at the vendor’s request

19: Removed at the vendor’s request

20: }

21: Removed at the vendor’s request

22: {

23: *Removed at the vendor’s request

24: Removed at the vendor’s request

25: }

26: Removed at the vendor’s request

27: Removed at the vendor’s request

28: }

Fragment of the decompiled pseudocode of the HandleLoginSessionId function

The ServerGenerateSessionId function (line 13), which generates the session ID, is queried

within the HandleLoginSessionId function. This function is queried under the condition that

the received session ID is equal to one of the following numbers: 0x0, 0x11 or 0x815. An

additional condition for creating a session ID is that a session ID must not already exist for the

received channel ID (line 10).

01: Removed at the vendor’s request

02: {

03: Removed at the vendor’s request

04:

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

70
© KASPERSKY, 1997 – 2019

05: Removed at the vendor’s request

06: Removed at the vendor’s request

07: }

08:

09: Removed at the vendor’s request

10: {

11: Removed at the vendor’s request

[...]

15: Removed at the vendor’s request

16: Removed at the vendor’s request

17: Removed at the vendor’s request

18: Removed at the vendor’s request

19: *Removed at the vendor’s request

20: *Removed at the vendor’s request

21: Removed at the vendor’s request

22: }

Fragments of the decompiled pseudocode of the SysTimeGetMs function of the SysTimer component and

fragments of the decompiled pseudocode of the ServerGenerateSessionId function of the CmpSrv

component

The ServerGenerateSessionId function is exported by the CmpSrv component. Its algorithm

is described below:

1. Verify the presence of an argument handle (lines 15 and 16).

2. Receive the current time by calling the SysTimeGetMs function (line 17).

3. Initialize the pseudo-random number generator. Set the value received at the preceding

step as the seed value for the generator (line 18).

4. Add the received time value to the random number and write it to the value for the argument

handle (line 19).

5. Set the most significant bit in the value for the argument handle (line 20).

This generator algorithm uses a pseudo-random number generator. This means that the

generated random number depends on the set seed value and may be restored. An attacker

can find out session IDs by decrementing the seed values and recreating the session ID for

the modified seed. This can be done within an acceptable time interval, even though the attack

will occur remotely.

The second weakness of this algorithm is the use of the SysTimeGetMs function. This

function is exported by the system component SysTimer. To correctly run CODESYS

Runtime, the developer must implement all system components. This means that the provided

implementation of the SysTimeGetMs function may differ from the implementation of this

function in a different CODESYS Runtime. In terms of security, this implementation of the

function that generates a session ID imposes additional responsibility on the developer that

will adapt the system components, including the SysTimer component.

Color

fields protocol_id service_group service_id Session id

Value
0xcd55

(HeaderTagProtocol)

0x81

(CmpDevice, Response)

0x2

(Login)
0xc5946b05

Example fragment of a packet containing a generated session ID (session_id)

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

71
© KASPERSKY, 1997 – 2019

For instance, in the analogous example of a response to an authentication request presented

in the chapter titled "Processing tags", the fragment of the response contains a data tag with

the session ID setting, and a seed with the value 356267299 was used to generate a session

ID value equal to 0xc5946b05.

Vulnerabilities in password encryption

In the DeviceServiceHandler function registered as a service by the CmpDevice component,

multiple vulnerabilities in the password encryption mechanism were detected. These

vulnerabilities can be exploited to decrypt an intercepted password.

A request to complete authentication is processed by the DeviceServiceHandler function,

which is registered by the CmpDevice component as a service with the ID of 1. The

DeviceServiceHandler function was examined as an example of tag processing in the

chapter titled "Processing tags".

To complete authentication in CODESYS Development System, a request must be sent for

the DeviceServiceHandler service containing a command with an ID equal to 2. The data

sent for authentication will include the encrypted password that will be decrypted during

processing by the service.

001: Removed at the vendor’s request

002: {

[...]

130: Removed at the vendor’s request

[...]

133: Removed at the vendor’s request

134: {

[...]

254: Removed at the vendor’s request

[...]

266: Removed at the vendor’s request

267: Removed at the vendor’s request

268: {

269: Removed at the vendor’s request

270: Removed at the vendor’s request

271: {

272: Removed at the vendor’s request

273: Removed at the vendor’s request

274: Removed at the vendor’s request

275: Removed at the vendor’s request

276: Removed at the vendor’s request

277: Removed at the vendor’s request

278: {

279: Removed at the vendor’s request

280: Removed at the vendor’s request

281: {

282: Removed at the vendor’s request

283: }

284: Removed at the vendor’s request

285: {

286: Removed at the vendor’s request

287: Removed at the vendor’s request

288: }

289: Removed at the vendor’s request

290: {

291: Removed at the vendor’s request

292: }

293: Removed at the vendor’s request

294: Removed at the vendor’s request

295: Removed at the vendor’s request

296: }

297: Removed at the vendor’s request

298: Removed at the vendor’s request

299: Removed at the vendor’s request

300: Removed at the vendor’s request

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

72
© KASPERSKY, 1997 – 2019

301: Removed at the vendor’s request

302: Removed at the vendor’s request

303: Removed at the vendor’s request

304: }

305: Removed at the vendor’s request

306: Removed at the vendor’s request

307: Removed at the vendor’s request

308: }

[...]

315: Removed at the vendor’s request

316: {

317: Removed at the vendor’s request

318: Removed at the vendor’s request

[...]

327: }

[...]

761: }

762: Removed at the vendor’s request

763: }

Fragment of decompiled code of the DeviceServiceHandler function of the CmpDevice component

The received password is decrypted in the UserMgrDecryptPassword function (line 318).

This function uses the following values as arguments:

1. encrypted_password value of the encrypted password that is extracted from the data

tag with the ID 17 (line 286).

2. pulCrypeType ID of the encryption algorithm that was used to encrypt the transmitted

password. The value of the ID is extracted from the data tag with the ID 0x22 (line 299).

3. pulChallenge random number value (nonce) involved in password decryption. The

value of the random number is extracted from the data tag with the ID 0x23.

01: Removed at the vendor’s request

02: {

[...]

16: Removed at the vendor’s request

17: Removed at the vendor’s request

18: Removed at the vendor’s request

19: Removed at the vendor’s request

20: Removed at the vendor’s request

21: Removed at the vendor’s request

22: {

23: Removed at the vendor’s request

24: {

25: Removed at the vendor’s request

26: Removed at the vendor’s request

27: Removed at the vendor’s request

28: Removed at the vendor’s request

29: Removed at the vendor’s request

30: Removed at the vendor’s request

31: {

32: Removed at the vendor’s request

33: Removed at the vendor’s request

34: Removed at the vendor’s request

35: Removed at the vendor’s request

36: Removed at the vendor’s request

37: Removed at the vendor’s request

38: }

39: Removed at the vendor’s request

40: }

[...]

Fragment of decompiled pseudocode of the UserMgrDecryptPassword function

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

73
© KASPERSKY, 1997 – 2019

The UserMgrDecryptPassword function performs the following actions:

1. Compares the values of the pulCrypeType argument with 1 (line 16). If these values are

different, the function is not processed further. In other words, CODESYS Runtime

provides only one encryption algorithm for a transmitted password, and the

pulCrypeType value must be transmitted each time during authentication, despite the

lack of alternatives for selecting the password encryption algorithm.

2. Writes a fixed key to the local key variable (line 18).

3. From the 4-byte value of the pulChallenge argument, writes only the least significant bit

to the 4-byte aChallenge array (line 25). Zero values are set for the remaining three bytes

of the array (lines 26-28).

4. Then the function uses three indexes: index password index, index_key key index,

and challenge_index random number index. The password index identifies the end of

decryption of an encrypted password. When the password index is equal to the size of the

encrypted password, the UserMgrDecryptPassword function terminates and returns

management to the DeviceServiceHandler function (line 32). The remaining two indexes

(random number index and key index) will be zeroed each time the size of their variables

(aChallenge and key) are equal to the value of the index (line 34 for the key variable and

line 36 for the aChallenge variable).

5. A character-by-character decryption of a password is provided below. Each decrypted

character is obtained by adding one byte taken from the ulChallenge array for the random

number index (challenge_index) and one byte taken from the key variable for the key

index (index_key). For the obtained number, an XOR operation is performed with the byte

taken from the encrypted_key password argument for the encrypted password index

(line 32).

If the UserMgrDecryptPassword function is successfully performed, the obtained password

will be decrypted and written to the decrypted_password argument.

From the described algorithm of the function, three vulnerabilities can immediately be

emphasized:

1. Using a weak random number. Despite the fact that the DeviceServiceHandler function

registered by the CmpDevice component for the authentication command extracts

a 4-byte numerical value from received data tags, only one of the four bytes is used to

decrypt the obtained password. Because the encryption algorithm is symmetrical, only one

byte is involved in password encryption as well.

Use of a random one-byte value for password protection does not increase the security of

a transmitted password because this value can be obtained by brute force within a very

short period of time.

2. Using an arbitrary value as the random number. The examined algorithm of the

DeviceServiceHandler function shows that the service authentication command of the

CmpDevice component uses the obtained numerical parameter from the authenticated

node as the random number (aChallenge) for password decryption.

In other words, despite the fact that the side performing the authentication sends a

random number that must be used in password encryption when it receives an

authentication request, the side that is being authenticated can encrypt the password with

its own number and transmit this number for decryption.

This means that an attacker who has intercepted the authentication data one time can

resend it without modifications to complete authorization.

3. Using a fixed key. The examined decryption algorithm uses a fixed key for password

encryption and decryption. This means that an attacker who has received the encrypted

authentication data can always decrypt an intercepted password.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

74
© KASPERSKY, 1997 – 2019

Based on the example of a packet containing an authentication request examined in the

chapter titled "Processing tags", we will show how a transmitted password can be partially

decrypted.

Color

fields

datagram_

layer_

fields

channel_

layer_

fields

Services_

layer_

fields

Data_tag_1 Data_tag_2 Parent_tag_1 Data_tag_3 Data_tag_4

Packet containing an authentication request

The encrypted password is transmitted in the data tag with the ID 0x11, which is designated

as Data_tag_4. You can partially restore a password by extracting data of the encrypted

password from the data tag and perform the XOR operation with bytes of the key for the same

indexes for each byte of data.

1: encrypted_password =

"\xce\x01\x29\x3b\x20\x5f\x36\x12\x18\x42\x46\x58\xf9\x75\x70\x68\x4c\x54\x68\x75\x77\x3f\x70\x68\x76\x44\

x72\x2a\x87\x55\x62\x52"

2: KEY = "zeDR96EfU#27vuph7Thub?phaDr*rUbR"

3: for c, s in enumerate(encrypted_password):

4: print chr(ord(KEY[c]) ^ ord(encrypted_password[c])),

5:

6: � d m i i s t M a t o �

Script in Python for partial decryption of a password

A partially restored password contains the letters d, m, I, I, s, t, a, t, o (line 6). These

characters are included in the "Administrator" string, which is the default password for an

Administrator.

Vulnerability of application code

One of the tasks performed by CODESYS Runtime is loading, managing, and executing

applications. CODESYS Development System compiles an application for CODESYS Runtime

and loads it over the CODESYS PDU protocol. A loaded application is a stream of binary data.

During our research, we did not focus on research of the structure of a compiled application.

(It should be noted that the U.S. Office of Naval Research supported research work that was

conducted to analyze the contents of a compiled application for CODESYS Runtime. This

work resulted in the development of the ICSREF framework.)

When studying the contents of packets sent from CODESYS Development System to

CODESYS Runtime while an application is being loaded, we detected places in the binary

stream where we could inject arbitrary machine code – shellcode.

https://www.onr.navy.mil/
https://github.com/momalab/ICSREF

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

75
© KASPERSKY, 1997 – 2019

Two functions turned out to be our backdoors: the function for initialization of global variables

(named Global INIT in the cited work) and the program start function (named PLC_PRG in the

cited work).

Header:

1: PROGRAM PLC_PRG

2: VAR

3: magic: DWORD:= 16#DEADBEEF;

4: END_VAR

Body:

5: magic := magic + 16#BEEF;

Source code of the PLC_PRG program

To confirm the capability of injecting arbitrary machine code for the purpose of executing

it in the binary stream of an application, we used CODESYS Development System to

compile the program and remotely downloaded it to a Raspberry PI device running CODESYS

Runtime. In the variable declaration block, the magic variable was declared with the value

0xDEADBEEF (line 3). The program body block indicates that the value of the magic variable

must be permanently stored with the value 0xBEEF and the obtained result must be written to

the magic variable (line 5).

Fragment of traffic when loading an application with references to using EF BE bytes

After downloading the compiled program to the Raspberry Pi device, the traffic was searched

for EF BE bytes. These bytes are contained in the numbers 0xDEADBEEF and 0xBEEF when

the bytes are ordered from least significant to most significant (little endian). Only two

references of these bytes were detected in traffic (highlighted in red). It should be noted that in

one packet, AD DE bytes (highlighted in blue) were detected next to the sought EF BE bytes.

Then the entire loaded stream of binary data was analyzed for the presence of machine

instructions of the ARM processor on which the Raspberry Pi is running. While searching for

EF BE bytes, we detected an instruction querying the number 0xDEADBEEF and an

instruction querying the number 0xBEEF.

We will examine the instructions of the first query.

01: 00 00 00 60 ANDVS R0, R0, R0

02: A0 01 D8 00 SBCEQS R0, R8, R0,LSR#3

03: 21 06 03 00 ANDEQ R0, R3, R1,LSR#12

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

76
© KASPERSKY, 1997 – 2019

04: 50 8A 01 00 ANDEQ R8, R1, R0,ASR R10

05: 22 CC 80 00 ADDEQ R12, R0, R2,LSR#24

06: 48 00 00 00 ANDEQ R0, R0, R8,ASR#32

07: 00 44 2D E9 STMFD SP!, {R10,LR}

08: 0D A0 A0 E1 MOV R10, SP

09: 08 D0 4D E2 SUB SP, SP, #8

10: 10 08 2D E9 STMFD SP!, {R4,R11}

11: 00 40 A0 E3 MOV R4, #0

12: 09 40 CA E5 STRB R4, [R10,#9]

13: 00 40 A0 E3 MOV R4, #0

14: 08 40 0A E5 STR R4, [R10,#-8]

15: 00 40 A0 E3 MOV R4, #0

16: 04 40 4A E5 STRB R4, [R10,#-4]

17: 14 40 9F E5 LDR R4, =0xDEADBEEF

18: 0C B0 9F E5 LDR R11, =0x3870

19: 00 40 8B E5 STR R4, [R11]

20: 10 08 BD E8 LDMFD SP!, {R4,R11}

21: 08 D0 8D E2 ADD SP, SP, #8

22: 00 84 BD E8 LDMFD SP!, {R10,PC}

Detected assembler instructions for an ARM processor querying the number 0xDEADBEEF

The constant 0xDEADBEEF is written to register R4 at line 17. The constant 0x3870 is written

to register R11 at line 18. At line 19, the value of the R4 register (0xDEADBEEF) is written at

the address of the value of the R11 register (0x3870).

01: 00 00 00 60 ANDVS R0, R0, R0

02: A0 01 C0 00 SBCEQ R0, R0, R0,LSR#3

03: 21 06 03 00 ANDEQ R0, R3, R1,LSR#12

04: 28 15 01 00 ANDEQ R1, R1, R8,LSR#10

05: 22 B4 80 00 ADDEQ R11, R0, R2,LSR#8

06: 30 00 00 00 ANDEQ R0, R0, R0,LSR R0

07: 00 44 2D E9 STMFD SP!, {R10,LR}

08: 0D A0 A0 E1 MOV R10, SP

09: 30 00 2D E9 STMFD SP!, {R4,R5}

10: 18 B0 9F E5 LDR R11, =0x3870

11: 00 40 9B E5 LDR R4, [R11]

12: 0C 50 9F E5 LDR R5, =0xBEEF

13: 05 40 84 E0 ADD R4, R4, R5

14: 00 40 8B E5 STR R4, [R11]

15: 30 00 BD E8 LDMFD SP!, {R4,R5}

16: 00 84 BD E8 LDMFD SP!, {R10,PC}

Detected assembler instructions for an ARM processor querying the number 0xBEEF

In contrast to the machine code of the first query, the machine code of the second query works

in reverse. First the constant 0x3870 is written to the R11 register (line 10). Then the memory

cell contents based on the address of the constant 0x3870 (line 11) is written to the R4

register. Then the constant 0xBEEF is written to the R5 register (line 12). The value of the R5

register (0xBEEF) is added to the value at the address of 0x3870 (line 13). The resulting sum

of the saved value from memory and the constant 0xBEEF is written to the R4 register, whose

value is then written to the memory cell at the address of 0x3870.

Based on the examined queries, we can assume that the address of the declared global

magic variable is located at the address of 0x3870. The value 0xDEADBEEF is written to the

magic variable in the examined machine code of the first detected query. In the second

detected query, the number 0xBEEF is added to the magic variable. The result of this addition

is again written to the address of the global magic variable (0x3870). Both fragments of

machine code correspond to the source code of the program PLC_PRG.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

77
© KASPERSKY, 1997 – 2019

Fragment of traffic when loading an application with assembler instructions

Machine instructions of an ARM processor are also transmitted over the CODESYS PDU

protocol. In the example of the second query, the instruction ADD R4, R4, R5 (line 13)

corresponds to bytes 05 40 84 E0 (highlighted in green in the packet), and the next instruction

STR R4, [R11] (line 14) corresponds to bytes 00 40 8B E5 (highlighted in orange).

Therefore, an attacker can inject his own machine code and execute it on a target device.

It should be mentioned that the system daemons of CODESYS Runtime on a Raspberry Pi

device are run as a background process (daemon) under the user name root, which has the

highest level of privileges in Linux OS. Therefore, executable machine code will also run with

the highest privileges in the system. The CODESYS Runtime emulator in Windows OS is also

run with the highest permissions in the system: SYSTEM permissions.

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

78
© KASPERSKY, 1997 – 2019

In conclusion

CODESYS Runtime is a sophisticated and powerful tool designed for developing PLC

programs and controlling PLCs. At the same time, it implements an effective architectural

approach that enables the capabilities of CODESYS Runtime itself to be expanded. The

protocol used for communication between the development environment, i.e., the CODESYS

Development System, and the execution environment, i.e., CODESYS Runtime, is multi-layer,

dynamic and, most importantly, proprietary.

Ultimately, the use of proprietary protocols negatively affects PLC vendors, because they have

limited knowledge of the software they use and have to entrust the initial protection of their

PLCs blindly to the framework’s developers.

CODESYS has made many steps to improve the security of their products. However, as our

research of the security of CODESYS Runtime has demonstrated, these steps are insufficient.

While analyzing the security of CODESYS Runtime, we identified 15 vulnerabilities and

reported them to the software vendor. Of those vulnerabilities reported, the vendor was

already aware of 5 (i.e., duplicates), 2 were referred to as architectural features by the

CODESYS security group and the remaining 8 were fixed. The vulnerabilities that were fixed

had CVSS base scores of 5.4 to 9.

It is worth noting that CODESYS subsequently did fix one of the vulnerabilities they had called

architectural features.

Our research was based on the black box method, which means that we had originally had no

information on CODESYS Runtime. Any information we have has been obtained from public

sources and from technical research.

After analyzing the data transferred over the CODESYS protocol and correlating CODESYS

Runtime software code with the data received over the network, we were able to identify four

vulnerabilities in the authentication mechanism – in the Services layer (which is the last of four

layers in the CODESYS protocol stack). These vulnerabilities were assigned the following IDs:

KLCERT-18-037 (CVE-2018-20025) and KLCERT-19-031 (CVE-2019-9013). By exploiting

these vulnerabilities in the authentication system, an attacker could be able to decrypt the

password being sent, implement an attack in which encrypted authentication data is reused

without being modified and predict the session ID.

CODESYS developers built their protocol on the TCP/IP protocol stack. As a result of this,

CODESYS has inherited some of the issues characteristic of TCP/IP: we identified

vulnerabilities in the Datagram layer (the second of four layers) and the Channel layer (the

third of four layers), the possible existence of which in the TCP/IP protocol stack was reported

back in 1989 (see Security Problems in the TCP/IP Protocol Suite).

In the Datagram layer of the CODESYS protocol stack, we determined that an attack identical

to IP spoofing was possible. This vulnerability was assigned the ID KLCERT-18-036 (CVE-

2018-20026). By automating the exploitation of this vulnerability, attackers could disguise their

activity on the network for a long time, manipulating devices with CODESYS Runtime running

on them and making these devices send malicious packets to each other.

We also discovered that an attack similar to the infamous ARP spoofing attack was possible

against the Datagram layer: the routing mechanism used on the CODESYS network makes it

possible to build an information network based on the tree topology from CODESYS Runtime

nodes. If the parent node can be changed without authentication, this makes man-in-the-

middle attacks possible. Thus, an attacker can use the protocol’s capabilities at the datagram

https://ics-cert.kaspersky.com/advisories/klcert-advisories/2018/12/19/klcert-18-037-codesys-control-v3-use-of-insufficiently-random-values/
https://www.codesys.com/fileadmin/data/customers/security/2018/Advisory2018-13_CDS-62811.pdf
https://ics-cert.kaspersky.com/advisories/klcert-advisories/2019/08/13/klcert-19-031-codesys-v3-password-transmission-vulnerability/
https://www.codesys.com/fileadmin/data/customers/security/2019/Advisory2019-08_CDS-62813.pdf
https://www.cs.columbia.edu/~smb/papers/ipext.pdf
https://ics-cert.kaspersky.com/advisories/klcert-advisories/2018/12/19/klcert-18-036-codesys-control-v3-improper-communication-address-filtering/
https://www.codesys.com/fileadmin/data/customers/security/2018/Advisory2018-14_CDS-62812.pdf
https://www.codesys.com/fileadmin/data/customers/security/2018/Advisory2018-14_CDS-62812.pdf

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

79
© KASPERSKY, 1997 – 2019

level to inform a CODESYS Runtime host that it has become that host’s new parent, which

will result in the host sending all of its outgoing traffic via the new parent.

The last specimen in the classical vulnerability zoo is the absence of a sandbox for the

program downloaded to the device. In the process of analyzing the protocol, it was determined

that some fragments of the program downloaded to the device are machine instructions.

The hypothesis that arbitrary code (shellcode) can be injected instead of these instructions

was confirmed. The vulnerability was assigned the ID KLCERT-18-035 (CVE-2018-10612).

Since the CODESYS Runtime daemon in Linux and the CODESYS Runtime service in

Windows run with the highest privileges (root and SYSTEM, respectively), arbitrary code will

also run with the highest privileges. This means that the attacker will not need to perform any

additional manipulations in the system or exploit any further vulnerabilities to achieve the

highest privilege level.

As information security experts know from their many years of experience, the ‘security by

obscurity’ approach is not the best strategy for protecting information. This is certainly true

of undocumented, proprietary network communication protocols. Any such protocol will

eventually be analyzed and its vulnerabilities identified. Unfortunately, in many cases threat

actors will do this sooner than white-hat researchers, if only because they have a much

stronger motivation.

We believe that all the vulnerabilities described in this article, and possibly others as well,

could have been found by the community of information security experts and enthusiasts at

the early stages of the protocol’s design, development and use. If the protocol specification

had been available to potential users, its vulnerabilities could have been identified during its

discussion and analysis and would not have affected products by hundreds of developers

installed at tens or even hundreds of thousands of industrial facilities.

At the current stage, such work takes much greater effort and requires much more specialist

knowledge, which, unfortunately, may be inaccessible to many developers who use

CODESYS in their solutions. Perhaps, in this respect, the development approach selected

was not optimal.

The CODESYS security group responded to information on the vulnerabilities identified

promptly and responsibly.

We sincerely thank the CODESYS team for their cooperation.

pi@raspberrypi:~ $./opt/codesys/bin/codesyscontrol.bin -vvvvvvv

CODESYS Control V3.5.12.0 for ARM - build Dec 18 2017

type:4102 id:0x00000010 name:CODESYS Control for Raspberry Pi SL vendor: 3S - Smart

Software Solutions GmbH

buildinformation: <none>

< ... bye >

 \ ^__^

 \ (--)_______

 (__)\)\/\

 ||----w |

 || ||

https://ics-cert.kaspersky.com/advisories/klcert-advisories/2018/12/19/klcert-18-035-codesys-control-v3-access-control-inactive-by-default/
https://www.codesys.com/fileadmin/data/customers/security/2018/Advisory2018-10_CDS-61037.pdf

SECURITY RESEARCH: CODESYS RUNTIME,
A PLC CONTROL FRAMEWORK

80
© KASPERSKY, 1997 – 2019

Kaspersky Industrial Control Systems Cyber Emergency Response Team (Kaspersky ICS CERT)

is a global project of Kaspersky aimed at coordinating the efforts of automation system vendors, industrial facility

owners and operators, and IT security researchers to protect industrial enterprises from cyberattacks. Kaspersky ICS

CERT devotes its efforts primarily to identifying potential and existing threats that target industrial automation systems

and the industrial internet of things.

Kaspersky ICS CERT ics-cert@kaspersky.com

https://ics-cert.kaspersky.com/
mailto:ics-cert@kaspersky.com

