
 

  

VNC vulnerability 
research 
 

Pavel Cheremushkin 

 

 

 
 

22.11.2019 

 

Version 1.0 



  

   

 

 
 
VNC VULNERABILITY RESEARCH    

1 
© KASPERSKY LAB, 1997 – 2019 

 

Contents 

 

Preparing for the research ............................................................................................................................................ 2 

System description .................................................................................................................................................... 2 

Possible attack vectors .............................................................................................................................................. 3 

Objects of research ................................................................................................................................................... 3 

Prior research ............................................................................................................................................................ 4 

Research findings ......................................................................................................................................................... 5 

LibVNC ...................................................................................................................................................................... 5 

TightVNC ................................................................................................................................................................... 6 

TurboVNC .................................................................................................................................................................. 8 

UltraVNC.................................................................................................................................................................... 9 

CVE-2018-15361 .................................................................................................................................................... 9 

CVE-2019-8262 .................................................................................................................................................... 11 

Conclusion .................................................................................................................................................................. 13 

 

 

 

 

 

 

In this article, we discuss the findings of research which covered several different implementations 
of a remote access system called Virtual Network Computing (VNC). As a result of this research, 
we identified a number of memory corruption vulnerabilities, which have been assigned a total of 

37 CVE identifiers. Some of the vulnerabilities identified, if exploited, could lead to remote code 
execution. 
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Preparing for the research 

The VNC system is designed to provide one device with remote access to another device's 

screen. It is worth noting that the protocol’s specification does not limit the choice of OS and 

allows cross-platform implementations. There are implementations both for common operating 

systems – GNU/Linux, Windows, Android – and for exotic ones. 

VNC has become one of the most widespread systems of its kind, thanks in part to cross-

platform implementations and open-source licenses. The exact number of installations is hard 

to estimate. Based on data from shodan.io, over 600,000 VNC servers are available online.  

If you add those devices which are only available on the local network, it can be confidently 

assumed that the total number of VNC servers in use is many times (perhaps by orders of 

magnitude) greater. 

According to our data, VNC is actively used in industrial automation systems. We have 

recently published an article on the use of remote administration tools in industrial control 

systems on our website. It is estimated in the article that various remote administration tools 

(RAT), including VNC, are installed on about 32% of industrial control system computers. In 

18.6% of all cases, RATs are included in ICS software distribution packages and are installed 

with that software. The remaining 81.4% were apparently installed by honest or not-so-honest 

employees of these enterprises or their contractors. In an article published on our website, we 

described attacks we had analyzed, in which the attackers had installed and used remote 

administration tools. Importantly, in some cases the attackers exploited vulnerabilities in 

remote administration tools as part of their attack scenarios. 

According to our estimates, most ICS vendors implement remote administration tools for their 

products based on VNC rather than any other system. This made an analysis of VNC security 

a high-priority task for us. 

In 2019, the BlueKeep vulnerability (CVE-2019-0708) in Windows RDP (Remote Desktop 

Services) triggered an emotional public response. The vulnerability enabled an unauthorized 

attacker to achieve remote code execution with SYSTEM privileges on a Windows machine on 

which the RDP server was running. It affected ‘junior’ versions of the operating system, such 

as Windows 7 SP1 and Windows 2008 Server SP1 and SP2.  

Some VNC server components in Windows are implemented as services that provide 

privileged access to the system, which means they themselves also have high-level access  

to the system. This is one more reason for prioritizing research on the security of VNC. 

System description 

VNC (Virtual Network Computing) is a system designed to provide remote access to the 

operating system’s user interface (desktop). VNC uses the RFB (remote frame buffer) protocol 

to transfer screen images, mouse movement and keypress events between devices. As a rule, 

each implementation of the system includes a server component and a client component. 

Since the RFB protocol is standardized, different implementations of the client and server 

parts are interchangeable. The server component sends the image of the server’s desktop  

to the client for viewing and the client in turn transmits client-side events (such as mouse 

cursor movements, keypresses, data copying and pasting via the cut buffer) back to the 

server. This enables the user on the client side to work on the remote machine where the  

VNC server is running. 

The VNC server sends an image every time the remote machine’s desktop is updated, which 

can occur, among other things, as a result of the client's actions. Sending a new complete 

https://www.shodan.io/search?query=%22rfb%22
https://ics-cert.kaspersky.com/reports/2018/09/20/threats-posed-by-using-rats-in-ics
https://ics-cert.kaspersky.com/reports/2018/09/20/threats-posed-by-using-rats-in-ics
https://ics-cert.kaspersky.com/reports/2018/08/01/attacks-on-industrial-enterprises-using-rms-and-teamviewer/
https://ics-cert.kaspersky.com/reports/2018/08/01/attacks-on-industrial-enterprises-using-rms-and-teamviewer/
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2019-0708
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screenshot over the network is obviously a relatively resource-intensive operation, so instead 

of sending the entire screenshot the protocol updates those pixels which have changed as a 

result of some actions or events. RFB also supports several screen update compression and 

encoding methods. For example, compression can be performed using zlib or RLE (run-length 

encoding). 

Although the software is designed to perform a simple task, it has sufficiently extensive 

functionality for programmers to make mistakes at the development stage. 

Possible attack vectors 

Since the VNC system consists of server and client components, below we look at two main 

attack vectors: 

1. An attacker is on the same network with the VNC server and attacks it to gain the ability 

to execute code on the server with the server’s privileges. 

2. A user connects to an attacker’s ‘server’ using a VNC client and the attacker exploits 

vulnerabilities in the client to attack the user and execute code on the user’s machine.  

Attackers would without doubt prefer remote code execution on the server. However, most 

vulnerabilities are found in the system’s client component. In part, this is because the client 

component includes code designed to decode data sent by the server in all sorts of formats.  

It is while writing data decoding components that developers often make errors resulting in 

memory corruption vulnerabilities. 

The server part, on the other hand, can have a relatively small codebase, designed to send 

encoded screen updates to the user and handle events received from the client side. 

According to the specification, the server must support only six message types to provide all 

the functions required for its operation. This means that most server components have almost 

no complicated functionality, reducing the chances of a developer making an error. However, 

various extensions are implemented in some systems to augment the server’s functionality, 

such as file transfer, chat between the client and the server, and many others. As our research 

demonstrated, it is in the code designed to augment the server’s functionality that the majority 

of errors were made. 

Objects of research 

We selected the most common VNC implementations for our research: 

 LibVNC – an open-source cross-platform library for creating a custom application 

based on the RFB protocol. The server component of LibVNC is used, for example,  

in VirtualBox to provide access to the virtual machine via VNC.  

 UltraVNC – a popular open-source VNC implementation developed specifically for 

Windows. Recommended by many industrial automation companies for connecting  

to remote HMI interfaces over the RFB protocol (see, for example, here and here). 

 TightVNC1.X – one more popular implementation of the RFB protocol. Recommended 

by many industrial automation system vendors for connecting to HMI interfaces from 

*nix machines. 

 TurboVNC – an open-source VNC implementation. Uses the libjpeg-turbo library  

to compress JPEG images in order to accelerate image transfer. 

As part of our research, we did not analyze the security of a very popular product called 

RealVNC, because the product’s license does not allow reverse engineering. 

https://vncdotool.readthedocs.io/en/0.8.0/rfbproto.html#client-to-server-messages
http://libvnc.github.io/
https://www.uvnc.com/
https://www.proface.com/product/soft/gpproex/spec/PFXEXEDV40
https://support.industry.siemens.com/cs/document/78463889/how-do-you-remotely-access-wincc-stations-(wincc-v7-and-wincc-professional)-?dti=0&lc=en-WW
https://www.tightvnc.com/
https://www.turbovnc.org/
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Prior research 

Before beginning to analyze VNC implementations, it is essential to do reconnaissance and 

see what vulnerabilities have already been identified in each of them. 

In 2014, the Google Security Team published a small LibVNC vulnerability analysis report. 

Since the project includes a very small amount of code, it could be assumed that Google 

engineers had identified all vulnerabilities existing in LibVNC. However, I was able to find 

several issues on GitHub (for example, this and this), which were created later than 2014.  

The number of vulnerabilities identified in the UltraVNC project is not large. Most of these 

vulnerabilities have to do with the exploitation of a simple stack overflow with arbitrary length 

data being written to a fixed-size buffer on the stack. 

All known vulnerabilities were found a relatively long time ago. Since then, project codebase 

has grown, while the older codebase was found to include old vulnerabilities.  

  

https://www.openwall.com/lists/oss-security/2014/09/25/11
https://github.com/LibVNC/libvncserver/issues/218
https://github.com/LibVNC/libvncserver/issues/211
https://www.exploit-db.com/exploits/18666
https://www.exploit-db.com/exploits/18666
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Research findings 

LibVNC 

After analyzing previously identified vulnerabilities, I fairly easily found variants of some of these 

vulnerabilities in the code of the extension providing file transfer functionality. The extension is 

not enabled by default: developers must explicitly allow it to be used in their LibVNC based 

projects. This is probably why these vulnerabilities had not been identified before. 

Next, I moved on from analyzing server code to researching the client part. It was there that  

I found vulnerabilities which had the most critical importance for the project and which were 

also quite diverse. 

Among the vulnerabilities identified, it is worth mentioning several classes of vulnerabilities 

that will also come up in other projects based on the RFB protocol. 

It can be said that each of these classes was made possible by the way the protocol’s 

specification is designed. More precisely, the protocol’s specification is designed in a way  

that does not guard developers against these classes of bugs, enabling such flaws to appear 

in the code.  

As an illustration of this point, you can look at the structures used in VNC projects to handle 

network messages. For example, open the rfbproto.h file, which has been used by generations 

of VNC project developers since 1999. The file is included in the LibVNC project, among others.  

An excellent example for demonstrating the first class of vulnerabilities is the 

rfbClientCutTextMsg structure, which is used to send information on cut buffer changes on the 

client to the server.  

typedef struct { 

    uint8_t type; /* always rfbClientCutText */ 

    uint8_t pad1; 

    uint16_t pad2; 

    uint32_t length; 

    /* followed by char text[length] */ 

} rfbClientCutTextMsg; 

After establishing a connection and performing an initial handshake, during which the client 

and the server agree to use specific screen settings, all messages transferred have the same 

format. Each message starts with one byte, which represents the message type. Depending 

on message type, a message handler and structure matching the type are selected. In 

different VNC clients, the structure is filled in more or less in the same way (pseudocode in C): 

ReadFullData(socket, ((char *)&msg) + 1, sz_rfbServerSomeMessageType - 1); 

In this way, the entire message structure is filled in, with the exception of the first byte, which 

defines the message type. It can be seen that all fields in the structure are controlled by the 

remote user. It should also be noted that msg is a union, which consists of all possible 

message structures. 

Since the contents of the cut buffer has an unspecified length, memory will be allocated for  

it dynamically, using malloc. It should also be remembered that the cut buffer field should 

presumably contain text and it is customary to terminate text data with the zero character in 

the C language. Given all this, as well as the fact that the field length has the type uint32_t  

https://github.com/LibVNC/libvncserver/blob/e0a9d96d56f1cbb99f71d97491102192d2ee4ee4/rfb/rfbproto.h#L21
https://github.com/LibVNC/libvncserver/blob/e0a9d96d56f1cbb99f71d97491102192d2ee4ee4/libvncclient/rfbproto.c#L1761
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and is fully controlled by the remote user, in this case we have a typical integer overflow 

(pseudocode in C): 

char *text = malloc(msg.length + 1); 

ReadFullData(socket, text, msg.length); 

text[msg.length] = 0; 

If an attacker sends a message length field with a value equal to  

UINT32_MAX = 232- 1 = 0xffffffff, the function malloc(0)  

will be called as  a result of an integer overflow. If the standard glibc malloc memory allocation 

mechanism is used, the call will return a chunk of the smallest possible size – 16 bytes. At the 

same time, a length equal to UINT32_MAX will be passed to the ReadFullData function as an 

argument, which, in the case of LibVNC, will result in a heap-based buffer overflow.  

The second vulnerability type can be demonstrated on the same structure. As one can read  

in the specification or the RFC, some structures include padding for field alignment. However, 

from a security researcher’s viewpoint, this is just one more opportunity to discover a memory 

initialization error (see here and here). Let’s have a look at this typical error (pseudocode in C): 

rfbClientCutTextMsg cct; 

cct.type = rfbClientCutText; 

cct.length = length; 

WriteToRFBServer(socket, &cct, sz_rfbClientCutTextMsg); 

WriteToRFBServer(socket, str, len); 

The message structure is created on the stack, after which some of its fields are filled in and 

the structure is sent to the server. It can be seen that the structures pad1 and pad2 remain 

empty. As a result of this, an uninitialized variable is sent over the network and an attacker can 

read uninitialized memory from the stack. If the attacker is in luck, the memory area that the 

attacker is able to access may contain the address of the heap, stack or text section, enabling 

the attacker to bypass ASLR and use overflow to achieve remote code execution on the client. 

Such trivial vulnerabilities have been found in VNC projects sufficiently often, which is why we 

decided to place them into separate classes. 

It is worth noting that analyzing such projects as LibVNC, which are positioned as cross-

platform solutions, is not an easy task. While doing research on such projects, one should 

ignore anything that has to do with the specific OS and architecture of the researcher’s 

computer and view the project exclusively through the prism of the C language standard, 

otherwise it’s easy to miss some obvious flaws in code, which can only be reproduced on a 

specific platform. For example, in this case, the heap overflow vulnerability was incorrectly 

fixed on the 32 bit platform because the size or the size_t type on the x86_64 platform is 

different from the same type’s size on the 32 bit x86 platform. 

Information on all vulnerabilities identified was provided to developers and the vulnerabilities 

were closed (some even twice, thanks to Solar Designer for the help). 

TightVNC 

The next target for research was a fairly popular VNC client implementation for GNU/Linux.  

I was able to identify vulnerabilities in that system very quickly, because most were fairly 

straightforward and some were identical to those found in LibVNC. Two code fragments from 

two different projects are compared below. 

https://tools.ietf.org/html/rfc6143#section-7.5.6
https://github.com/LibVNC/libvncserver/blob/79516a6aa3e875c8d9f4c83667076aa070fe5d6e/libvncclient/rfbproto.c#L1656
https://sourceforge.net/p/ultravnc/code/1199/
https://github.com/LibVNC/libvncserver/issues/273
https://twitter.com/solardiz?lang=en
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Originally, this vulnerability was identified in the LibVNC project, in the CoRRE decoding 

method (see code on the right-hand side). In the above code fragment, data of arbitrary length 

is read to a fixed-length buffer inside the rfbClient structure. This naturally results in buffer 

overflow. By a curious coincidence, function pointers are located inside the structure, almost 

right after the cut buffer, which almost immediately results in code execution. 

It can be observed that, with the exception of some minor variations, the code fragments from 

LibVNC and TightVNC can be considered identical. Both fragments were copied from the 

AT&T Laboratories. The developers introduced this vulnerability back in 1999. (I was able to 

determine this through the AT&T Laboratories license, in which developers usually specify 

who was involved in the development project during different time periods.) That code has 

been modified several times since then – for example, in LibVNC the static global buffer was 

moved to the client’s structure – but the vulnerability survived all the modifications. 

It is also worth noting that HandleCoRREBPP is a rather original name. If you search the code 

of projects on GitHub for this character combination, you can find lots of VNC-related projects 

that thoughtlessly copied the vulnerable decoding function carrying this name or the entire 

LibVNC library. This is why these projects may remain vulnerable forever – unless the 

developers update the contents of their projects or fix the vulnerability in the code themselves. 

The character combination HandleCoRREBPP is in fact not a function name. BPP in this case 

stands for “Bits per Pixel” and is a number equal to 8, 16 or 32, depending on the color depth 
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agreed on by the client and the server at the initialization stage. It is assumed that developers 

will use this file as an auxiliary file in their macros as follows: 

#ifndef HandleCoRRE8   

#define BPP 32 

#include ”corre.h” 

#undef BPP 

#endif 

The result is several functions: HandleCoRRE8, HandleCoRRE16, and HandleCoRRE32. 

Since the program was originally written in C rather than C++, the developers had to come up 

with such tricks because there were no templates available. However, if you google the 

function name HandleCoRRE or HandleCoRRE32, you may discover that there are projects 

which were slightly modified, either using or not using patterns, but which still contain the 

vulnerability. Unfortunately, there are hundreds of projects in which this code was included 

without any changes or copied and it is not always possible to contact their developers.  

The sad story of TightVNC does not end here. When we reported the vulnerabilities to 

TightVNC developers, they thanked us for the information and let us know that they had 

discontinued the development of the TightVNC 1.X line and no longer fixed any vulnerabilities 

found, because it had become uneconomical for their company. At some point, GlavSoft 

began to develop a new line, TightVNC 2.X, which does not include any GPL-licensed third-

party code and which can therefore be developed as a commercial product. It should be noted 

that TightVNC 2.X for Unix systems is distributed only under commercial licenses and should 

not be expected to be released as open source software. 

We reported the vulnerabilities identified in TightVNC oss-security and emphasized that 

package maintainers needed to fix these vulnerabilities by themselves. Although we sent our 

notification to package maintainers in January 2019, the vulnerabilities had not been fixed at 

the time of this article’s publication (November 2019). 

TurboVNC 

This VNC project deserves a special ‘prize’: the one vulnerability identified in it is mind-

boggling. 

Consider a C code fragment taken from the main server function designed to handle user 

messages: 

char data[64]; 

READ(((char *)&msg) + 1, sz_rfbFenceMsg - 1) 

READ(data, msg.f.length) 

if (msg.f.length > sizeof(data)) 

    rfbLog("Ignoring fence.  Payload of %d bytes is too large.\n", 

           msg.f.length); 

else 

    HandleFence(cl, flags, msg.f.length, data); 

return; 

 

https://www.openwall.com/lists/oss-security/2018/12/10/5
https://github.com/TurboVNC/turbovnc/blob/8cf390455d62dfd50595f9edfc53bc1349a4c481/unix/Xvnc/programs/Xserver/hw/vnc/rfbserver.c#L1308
https://github.com/TurboVNC/turbovnc/blob/8cf390455d62dfd50595f9edfc53bc1349a4c481/unix/Xvnc/programs/Xserver/hw/vnc/rfbserver.c#L1308
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This code fragment reads a message in the rfbFenceType format. The message provides  

the server with information on the length msg.f.length of type uint8_t user data, which follows 

the message. This is obviously the case of arbitrary user data being read into a fixed-size 

buffer, resulting in stack overflow. Importantly, a check of the length of the data read is 

performed after the data has been read into the buffer. 

Due to the absence of overflow protection on the stack (a so-called canary), this vulnerability 

makes it possible to control return addresses and, consequently, to achieve remote code 

execution on the server. An attacker would, however, first need to obtain authentication 

credentials to connect to the VNC server or gain control of the client before the connection  

is established. 

UltraVNC 

In UltraVNC, I was able to identify multiple vulnerabilities in both the server and the client 

components of the project, to which 22 CVE IDs were assigned.  

A distinguishing feature of this project is its focus on Windows systems. When analyzing 

projects that can be compiled for GNU/Linux, I prefer to take two different approaches to 

vulnerability search. First, I analyze the code, looking for vulnerabilities in it. Second, I try  

to figure out how the search for vulnerabilities in the project can be automated using fuzzing. 

This is what I did when analyzing LibVNC, TurboVNC, and TightVNC. For such projects, it is 

very easy to write a wrapper for libfuzzer, since the project does not depend on a specific 

operating system’s implementation of the network API – there is an additional abstraction layer 

implemented for that. To write a good fuzzer, all you have to do is implement the target 

function on your own, as well as rewrite the networking functions. This will allow data from the 

fuzzer to be fed to the program – as if it was transferred over the network.  

However, in the case of analyzing projects for Windows, the latter technique is difficult to use 

even with open-source projects because the relevant tools are either not available or poorly 

developed. At the time of the analysis, libfuzzer for Windows had not yet been released. In 

addition, the event-oriented approach used in Windows application development means that  

a very large amount of code would have to be rewritten to achieve good fuzzing coverage. 

Because of this, I used only manual code analysis when analyzing UltraVNC for 

vulnerabilities. 

As a result of this analysis, I found an entire ‘zoo’ of vulnerabilities in UltraVNC – from trivial 

buffer overflows in strcpy and sprintf to more or less curious vulnerabilities that can rarely be 

encountered in real-world projects. Below we discuss some of these vulnerabilities. 

CVE-2018-15361 

This vulnerability exists in UltraVNC client-side code. At the initialization stage, the server 

should provide information on display height and width, color depth, palette and name of the 

desktop, which can be displayed, for example, in the title bar of the window. 

  

http://llvm.org/docs/LibFuzzer.html
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The name of the desktop is a string of an undefined length. Consequently, the string’s length 

is sent to the client first, followed by the string itself. The relevant fragment of code is shown 

below: 

void ClientConnection::ReadServerInit() 

{ 

    ReadExact((char *)&m_si, sz_rfbServerInitMsg); 

 

    m_si.framebufferWidth = Swap16IfLE(m_si.framebufferWidth); 

    m_si.framebufferHeight = Swap16IfLE(m_si.framebufferHeight); 

    m_si.format.redMax = Swap16IfLE(m_si.format.redMax); 

    m_si.format.greenMax = Swap16IfLE(m_si.format.greenMax); 

    m_si.format.blueMax = Swap16IfLE(m_si.format.blueMax); 

    m_si.nameLength = Swap32IfLE(m_si.nameLength); 

 

    m_desktopName = new TCHAR[m_si.nameLength + 4 + 256]; 

    m_desktopName_viewonly = new TCHAR[m_si.nameLength + 4 + 256+16]; 

    ReadString(m_desktopName, m_si.nameLength); 

. . . 

} 

The attentive reader will make the correct observation that the above code contains an integer 

overflow vulnerability. However, in this case the vulnerability leads not to heap-based buffer 

overflow in the ReadString function but to more curious consequences.  

void ClientConnection::ReadString(char *buf, int length) 

{ 

    if (length > 0) 

        ReadExact(buf, length); 

    buf[length] = '\0'; 

} 

It can be seen that the ReadString function is designed to read a string of the length length 

and terminate it with a zero. It is worth noting that the function takes the signed type as its 

second argument. 

If we specify a very large number in m_si.nameLength, it will be treated as a negative number 

when passed to the ReadString function as an argument. This will result in length failing the 

positivity check and the buf array remaining unitialized. Only one thing that will happen: a null 

byte will be written at offset buf + length. Given that length is a negative number, this makes it 

possible to write the null byte at a fixed negative offset relative to buf. 

The upshot of this is that if an integer overflow occurs when allocating m_desktopName and 

the buffer is allocated on the regular heap of the process, this will make it possible to write the 

null byte to the previous chunk. If an integer overflow does not occur and the system has 

sufficient memory, a large buffer will be allocated, with a new heap allocated for it. With the 

right parameters, a remote attacker would be able to write a null byte to the _NT_HEAP 

structure, which will be located directly before a huge chunk. This vulnerability is guaranteed 

to cause a DoS, but the question of the ability to achieve remote code execution remains 

open. I wouldn’t rule out that experts in exploiting the Windows userland heap could turn this 

vulnerability into an RCE if they wanted to.  
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CVE-2019-8262 

The vulnerability was identified in the handler of data encoded using the Ultra encoding. It 

demonstrates that the security and availability of this functionality really hung by a very thin 

thread. 

The handler uses the lzo1x_decompress function from the minilzo library. To understand 

what the vulnerability is, one has to look at the prototypes of compression and decompression 

functions. 

To call the decompression function, one has to pass the buffer containing compressed data, 

compressed data length, the buffer to which the data should be unpacked and its length as 

inputs. It should be kept in mind that the function may return an error if the input data cannot 

be decompressed. In addition, the developer needs to know the exact length of the data that 

will be unpacked to the output buffer. This means that, in addition to the error code, the 

function should return a value equal to the number of bytes written. For example, the 

argument that is used to pass the write buffer length can be used for this, provided that it is 

passed by pointer. In that case the minimum interface of the decompression function will look 

as follows:  

int decompress(const unsigned char *in, size_t in_len, unsigned char *out, size_t 

*out_len) 

The first four parameters of this function are the same as the first four parameters of the 

lzo1x_decompress function. 

Now consider the fragment of UltraVNC code that contains the critical heap overflow 

vulnerability. 

void ClientConnection::ReadUltraRect(rfbFramebufferUpdateRectHeader *pfburh) { 

 

    UINT numpixels = pfburh->r.w * pfburh->r.h; 

 

    UINT numRawBytes = numpixels * m_minPixelBytes; 

    UINT numCompBytes; 

    lzo_uint new_len; 

    rfbZlibHeader hdr; 

 

    // Read in the rfbZlibHeader 

    omni_mutex_lock l(m_bitmapdcMutex); 

    ReadExact((char *)&hdr, sz_rfbZlibHeader); 

    numCompBytes = Swap32IfLE(hdr.nBytes); 

 

    CheckBufferSize(numCompBytes); 

    ReadExact(m_netbuf, numCompBytes); 

    CheckZlibBufferSize(numRawBytes); 

    

lzo1x_decompress((BYTE*)m_netbuf,numCompBytes,(BYTE*)m_zlibbuf,&new_len,NULL); 

       . . . 

} 
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As you can see, UltraVNC developers do not check the lzo1x_decompress return code, 

which is, however, insignificant compared to another flaw – the improper use of new_len.  

The uninitialized variable new_len is passed to the lzo1x_decompress function. At the time  

of calling the function, the variable should be equal to the length of the m_zlibbuf buffer. In 

addition, while debugging vncviewer.exe (the executable file was taken from a build on the 

UltraVNC official website), I was able to find out why this code had passed the testing stage.  

It turned out that the problem was that, since the variable new_len was not initialized, it 

contained a large text section address value. This made it possible for a remote user to pass 

specially crafted data to the decompression function as inputs to ensure that the function, 

when writing to the m_zlibbuf buffer, would write the data beyond the buffer’s boundary, 

resulting in heap overflow. 

  

https://www.uvnc.com/
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Conclusion 

In conclusion, I would like to mention that while doing the research I often couldn’t help 

thinking that the vulnerabilities I found were too unsophisticated to have been missed by 

everyone before. However, it was true. Each of these vulnerabilities had a very long lifetime.  

Some of the vulnerability classes identified in the study are present in a large number of open-

source projects, surviving even codebase refactoring. I believe it is very important to be able to 

systematically identify such sets of vulnerable projects containing vulnerabilities that are not 

always inherited in clear ways.  

Almost none of the projects analyzed are unit tested; programs are not systematically tested 

for security using static code analysis or fuzzing. Magic constants that are abundant in code 

make it similar to a house of cards: just one constant changed in this unstable structure could 

result in a new vulnerability. 

Here are our recommendations for developers and vendors that use third-party VNC project 

code in their products: 

 Set up a bug tracking mechanism in all third-party VNC projects used and regularly 

update their code to the latest release. 

 Add compilation options that make it harder for attackers to exploit any vulnerabilities 

that may exist in the code. Even if researchers are not able to identify all the 

vulnerabilities in a project, exploiting them should be made as difficult as possible. 

For example, some of the vulnerabilities described in this article would be impossible 

to exploit to achieve remote code execution if the project was compiled as a position-

independent executable (PIE). In that case, the vulnerabilities would remain, but their 

exploitation would lead to denial of service (DoS) rather than RCE.  

Another example is the unfortunate experience with TurboVNC: the compiler can 

sometimes optimize the procedure of checking the stack canary. Some compilers 

perform such optimizations by removing stack canary checks from the functions that 

don’t have explicitly allocated arrays. However, the compiler could make a mistake 

and fail to check for the presence of a buffer in some of the structures on the stack or 

in switch-case statements (which is what probably happened in the case of 

TurboVNC). To make it impossible to exploit a vulnerability that has been identified, 

the compiler should be explicitly told that the stack canary checking procedure should 

not be optimized. 

 Perform fuzzing and testing of the project on all architectures for which the project is 

made available. Some vulnerabilities may manifest themselves only on one of the 

platforms due to its specific features.  

 Be sure to use sanitizers in the process of fuzzing and at the testing stage. For 

example, a memory sanitizer is guaranteed to identify such vulnerabilities as the use if 

uninitialized values. 

On the positive side, password authentication is often required to exploit server-side 

vulnerabilities, and the server may not allow users to configure a password-free authentication 

method for security reasons. This is the case, for example, with UltraVNC. As a safeguard 

against attacks, clients should not connect to unknown VNC servers and administrators should 

configure authentication on the server using a unique strong password.  
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The following CVE were registered based on this research: 

 

1. LibVNC 

CVE-2018-6307 

CVE-2018-15126 

CVE-2018-15127 

CVE-2018-20019 

CVE-2018-20020 

CVE-2018-20021 

CVE-2018-20022 

CVE-2018-20023 

CVE-2018-20024 

CVE-2019-15681 

 

2. TightVNC 

CVE-2019-8287 

CVE-2019-15678 

CVE-2019-15679 

CVE-2019-15680 

 

3. TurboVNC 

CVE-2019-15683 

 

4. UltraVNC 

CVE-2018-15361 

CVE-2019-8258  

CVE-2019-8259 

CVE-2019-8260 

CVE-2019-8261 

CVE-2019-8262 

CVE-2019-8263 

CVE-2019-8264 

CVE-2019-8265 

CVE-2019-8266 

CVE-2019-8267 

CVE-2019-8268 

CVE-2019-8269 

CVE-2019-8270 

CVE-2019-8271 

CVE-2019-8272 

CVE-2019-8273 

CVE-2019-8274 

CVE-2019-8275 

CVE-2019-8276 

CVE-2019-8277 

CVE-2019-8280 

 

 

To be continued… 

  

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6307
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15126
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15127
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20019
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20020
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20021
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20022
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20023
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-20024
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2019-15681
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8287
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2019-15678
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2019-15679
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2019-15680
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2019-15683
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15361
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8258
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8259
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8260
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8261
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8262
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8263
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8264
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8265
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8266
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8267
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8268
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8269
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8270
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8271
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8272
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8273
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8274
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8275
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8276
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8277
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8280
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