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1 Abstract 

Modems play an important role in enabling connectivity for a wide range of devices. This 
includes not only traditional mobile devices and household appliances, but also 
telecommunication systems in vehicles, ATMs and Automated Process Control Systems 
(APCS). 

When integrating a modem, many product developers do not think of protecting their device 
from a potential modem compromise. As one of the main communication channels for the 
end device, the modem not only has access to the information flow between the device and 
the outside world, but may also have almost unlimited access to the end device’s most 
critical systems and resources. Thus, modem security is of vital importance. 

To make the problem worse, when a critical vulnerability is discovered in just one modem 
model and version, a significant amount of time may be required to update all the devices 
in which it is installed. And some of them may even not have a remote modem updating 
feature at all, such as a car's Telematic Control Unit (TCU). In such cases, installing the 
update typically requires additional effort and expense for the manufacturer of the end 
product to manually address each vulnerable device or vehicle. 

For this reason, a particular modem manufactured by Cinterion caught our interest. When 
we began our assessment, the only known registered vulnerability was CVE-2020-158581, 
which is described in greater detail elsewhere2. 

We ultimately discovered several vulnerabilities, two of which are considered critical. One 
allows remote execution of arbitrary code at the level of the modem OS via sending specially 
crafted SMS messages to it. The other vulnerability allows local execution of an unsigned 
MIDlet with vendor privileges on the modem. When combined, the identified vulnerabilities 
allow an attacker to remotely obtain full control over the modem. 

                                            

1 https://www.cve.org/CVERecord?id=CVE-2020-15858 
2 https://threatpost.com/flaw-affecting-millions-iot-devices/158472/ 

https://www.cve.org/CVERecord?id=CVE-2020-15858
https://www.cve.org/CVERecord?id=CVE-2020-15858
https://threatpost.com/flaw-affecting-millions-iot-devices/158472/
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2 Overview 

Section 3 provides general information about the modem. In this section, we describe the 
modem’s user features, ways to interact with it according to the documentation, as well as 
its hardware components. 

Section 5 outlines the algorithm for recovering the modem firmware from its ROM image. 
The recovery process involved reading the modem's NAND memory using a programmer, 
followed by reconstructing the logical image of the modem ROM sections from the extracted 
physical dump. 

Section 6 focuses on evaluating the security of the MIDlets. It examines various attack 
vectors and outlines the potential impacts of exploiting the identified vulnerabilities. 

Section 7 contains a detailed analysis of the security of the modem OS. It explains how an 
attacker can execute malicious code on the modem CPU by sending a few specific SMS 
messages. 

Section 8 focuses on code execution on the modem. It discusses the specifics of the modem 
CPU's internal architecture and outlines the method for executing arbitrary code within the 
context of any modem OS process. 

Section 9 contains a list of all the discovered vulnerabilities with their respective CVEs and 
criticality scores. 



    

Cinterion® EHS5 3G UMTS/HSPA Module Research | page 6 of 82 

3 Modem description 

The study focused on the EHS5-E series modem, originally manufactured by Thales before 
the business unit was acquired by Telit. Several modem models from this vendor share 
similar software and hardware architectures. Therefore, the findings of this study apply to 
devices across multiple model series: 

• Cinterion BGS5 

• Cinterion EHS5/6/7 

• Cinterion PDS5/6/8 

• Cinterion ELS61/81 

• Cinterion PLS62 

According to the software model, the modem consists of four software components: 

• Firmware (FW) 

• Application (App) 

• Java Remote Control (JRC) 

• Service LWM2M Agent (SLAE) 

3.1 Modem software components 

The modem is provided to device developers along with an SDK for creating software 
components that execute business logic, known as MIDlets. The firmware (FW) and 
application (App) components form part of the modem's low-level code, containing the 
modem's operating system and the execution environment for user MIDlets. A MIDlet is a 
Java application supported by a specialized subsystem, Java ME (Micro Edition), which 
features a limited set of Java commands. The JRC and SLAE components are special 
MIDlets developed by the manufacturer. 

The user is provided with the ability to install MIDlets independently and to configure the 
security settings for their execution. The following security mechanisms are used for 
MIDlets: 

• Java bytecode checks during installation (always enabled) 

• MIDlet digital signatures (configured by the endpoint developer) 

By default, only the manufacturer certificate is installed on the modem to validate MIDlets 
with manufacturer-level execution privileges. Installing and configuring certificates for 
custom MIDlets is the responsibility of the end product developer. This is described in more 
detail in the user manual3. 

3.2 Types of MIDlets 

Based on our analysis, all MIDlets on the modem can be divided into two categories by 
privilege level: 

• Manufacturer 

                                            
3 EHSx Java User’s Guide, v15 
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• User signed / unsigned 

Only the JRC and SLAE MIDlets belong to the manufacturer level. They have the highest 
privileges without any code execution restrictions at the Java level. 

The second category of privileges is granted to user MIDlets. Their functionality is restricted 
in relation to file system (FS) operations, GSM module operations, etc. For example, a user 
MIDlet cannot read the entire modem FS, but the JRC module can. 

If a user certificate is installed, only a signed user MIDlet with User Signed privileges will be 
executed on the modem. In other words, User Signed MIDlets are only used to protect the 
modem from executing a MIDlet from an illegitimate user, such as an intruder or security 
researcher. 

3.3 Software update 

A modem software update file is supplied by the manufacturer in the form an encrypted 
binary image. The image contains an update for the FW and App, an update for the JRC 
component, and optionally for the SLAE. Although the JRC is a MIDlet, it also contains 
modules that use APIs to interact with OS drivers. This provides interaction with OS 
subsystems: the FS, the data transfer subsystem, and communication with external 
hardware interfaces (e.g., USB). That’s why the JRC and App components are always 
updated together – a driver update in the OS may entail a change in the APIs. 

Our research did not involve a detailed analysis of the modem software update mechanism. 

3.4 Installing MIDlets on the modem 

MIDlets can be installed both locally and remotely. Local installation of MIDlets is done 
through the JRC component. Remote installation is possible via a special OTAP 
mechanism, or in M2M scenarios, via the SLAE component. 

Using the modem in an M2M scenario involves creating a personal user account on the 
manufacturer's website. This personal account allows the user to perform standard actions 
with MIDlets on all paired devices, such as installing and uninstalling MIDlets. In our study, 
we did not analyze the mechanisms of remote M2M installation of MIDlets. 

OTAP support is provided by the App and JRC components. The process of installing and 
updating user MIDlets via OTAP requires prior activation of OTAP by the user on the 
modem. The user may specify additional attributes that will be used for OTAP: JAD File 
URL, HTTP User, HTTP Password, etc. The process of updating via OTAP is described in 
detail in the EHSx Java User’s Guide. 

Local installation is performed via the MES communication protocol and special AT 
commands. The interface itself and AT command processing are implemented in the JRC 
component. The MES protocol enables interaction with the modem's user FS (hereinafter 
referred to as the "UFS"), including writing to or deleting files from the UFS. 

Upon installing the driver provided with the SDK, the content of the modem’s UFS, which is 
mounted at the path '///a:/', becomes accessible. The driver functions as a user add-on over 
the MES protocol. Although MES formally supports working with any path value except for 
'///a:/', no other internal paths are known, and attempts to read paths starting with a different 
root result in an error. This is due to the filtering of query parameters in MES, ensuring that 
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everything not belonging to the 'a://' root returns an error, even though the UFS has several 
valid roots. 

Local installation of MIDlets is performed in two steps. First, the MIDlet files (.jar and .jad) 
must be copied to the modem UFS. Next, the MIDlet is installed on the modem using the 
AT^SJAM=0 AT command. During the execution of this command, the MIDlet files are 
copied to a part of the modem FS that is inaccessible to the user and are then removed from 
the UFS. The path to which MIDlets are copied during installation is unknown. This helps 
ensure the confidentiality of both user and manufacturer MIDlets. An installed MIDlet is 
launched from its new location in the modem FS. A list of all installed MIDlets can also be 
extracted using the AT^SJAM command. Figure 1 shows an example of the output of this 
command. 

 

Figure 1. Example output of the AT^SJAM command 

The modem documentation (Figure 2) states that the 
javax.microedition.io.file.File.FileConnection connector used to work with the FS filters 
requests to files with the .jar extension. 

 

Figure 2. Snippet from the Cinterion documentation 

This behavior was confirmed by a simple test: trying to access files with the .jar extension 
(Figure 3) produced an error. 

 

Figure 3. Attempting to access files with the .jar extension 
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3.5 Debugging MIDlets and modem execution 

According to the modem’s official documentation 4 , several interfaces are available to 
interact with the modem, as shown in Figure 4. 

 

Figure 4. Available modem interfaces 

Among these, the ASC0, ASC1 and USB interfaces make it possible to get debug 
information. ASC0 or ASC1 are used to transmit information between the modem and the 
debugging host through the UART protocol. In case of USB, the UART interface is emulated. 

The modem provides multiple mechanisms for getting debug information: 

                                            
4 Cinterion® EHS5-E/EHS5-US Hardware Interface Description: https://www.gs-
m2m.de/fileadmin/Bilder/GSM_Module/Module/EHS5/ehs5_us_e_hid_04003a.pdf 

https://www.gs-m2m.de/fileadmin/Bilder/GSM_Module/Module/EHS5/ehs5_us_e_hid_04003a.pdf
https://www.gs-m2m.de/fileadmin/Bilder/GSM_Module/Module/EHS5/ehs5_us_e_hid_04003a.pdf
https://www.gs-m2m.de/fileadmin/Bilder/GSM_Module/Module/EHS5/ehs5_us_e_hid_04003a.pdf
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• IDE 

• UART interface (logical or physical) 

IDE allows full debugging of an executable MIDlet on the modem using the Java MIDlets 
debugging subsystem. This includes their loading onto the modem, step-by-step execution, 
and unloading. Interaction with the modem in debug mode takes place through a special 
PPP connection established via USB. The debugging mechanism is described in detail in 
the manufacturer's documentation5. 

In addition to debugging MIDlets, the modem allows the collection of logs of its subsystems, 
including MIDlet operations. The output format is determined by the AT+TRACE command. 
An example of the command to enable output of debugging information on the modem is 
shown below. 

at+trace=,115200,"st=0,pr=1,bt=0,ap=1,db=1,lt=0,li=0" 

The command parameters determine which modem subsystems to collect information from. 

Information on the subsystems from which debugging information can be collected is 
available in the detailed help (Figure 5) for this AT command. 

                                            
5 EHSx Java User’s Guide, v15 
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Figure 5. Detailed help output of the AT+TRACE command 
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4 Information security assumptions regarding the 

modem 

The modem’s information security can be divided into two domains: 

• Security of user MIDlets and manufacturer MIDlets 

• Security of the modem OS 

4.1 MIDlet security 

MIDlets are protected on the modem to preserve two main security properties: confidentiality 
and integrity. 

MIDlet confidentiality is provided by special restrictions on AT commands that allow the user 
to install, delete and execute MIDlets, as well as by prohibiting reading of .jar files from the 
UFS. After installation, MIDlets themselves are stored in an unknown location in the modem 
FS. 

The question of violating the confidentiality of user MIDlets can be examined by testing two 
assumptions. The first is that it is impossible to determine the path where MIDlets are stored 
within the modem. The second asserts that it is impossible to bypass the restrictions 
preventing the reading of files with the .jar extension. If both assumptions are false, then 
MIDlet confidentiality could be violated. 

The integrity property is ensured on the modem by means of a digital signature. The integrity 
of the Java byte code is additionally checked by the Java virtual machine for .jar files. 
However, this latter mechanism does not provide sufficient tamper protection, so we only 
consider the digital signature mechanism as a measure that ensures integrity. 

Digital signatures are checked when MIDlets are launched. MIDlets with specific 
permissions can only be launched if this check is passed successfully. It is important to note 
that if the developer of the end device has not installed a security certificate, integrity is only 
ensured for the manufacturer's MIDlets that have been signed with its key and launched 
with the manufacturer's privileges. If a security certificate is installed, such protection is also 
extended to user MIDlets. 

Thus, claiming that the integrity of user MIDlets cannot be violated entails there is no way 
to modify an existing MIDlet on the modem FS and that there is no way to launch a modified 
MIDlet if a digital signature is used (since in case that no signature is used, any user can 
install, reinstall and launch MIDlets). If both statements are false, the integrity of modem 
MIDlets could be violated. 

4.2 Modem OS security 

From a security perspective, the main component of a modem is its OS. Confidentiality and 
integrity are ensured by distributing OS updates only to registered users and only in 
encrypted form. We have not been able to find any update images available for download 
in public sources. 

It is important to note that violating the confidentiality property alone does not grant an 
attacker the ability to execute arbitrary code on the modem. Similarly, even with the ability 
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to violate the integrity of the executable code, exploiting this capability to execute arbitrary 
code is significantly more difficult without access to the code base itself, either in source 
code or binary form. However, compromising both confidentiality and integrity would 
completely compromise the modem OS and all its MIDlets. 
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5 Obtaining modem firmware 

While researching the modem, our team aimed to verify its stated security properties. We 
focused on analyzing both MIDlet and modem OS security. To achieve this, we developed 
a research device using a printed circuit board of our own design (Figure 6). 

 

Figure 6. Research device 

Next, we analyzed the modem’s hardware components (Figure 7). We identified its ROM, 
which is based on NAND memory and used to store the modem's software components. 
We extracted an image from this NAND memory using the ChipProg programmer. 
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Figure 7. Hardware components of the modem 

5.1 Building a logical image of firmware 

The modem firmware extracted from the NAND memory dump consists of "raw" data from 
the physical NAND blocks. Data in NAND memory is stored as charges in specialized 
hardware cells, each made up of a transistor and capacitor. All physical space available for 
storage is segmented into sectors, which are then grouped into pages. Pages in turn are 
assembled into blocks6. 

Due to the nature of the storage device, reading errors may occur at the physical level - a 
zero may be read as a one and vice versa. Error-correcting codes are used to handle such 
errors. Usually, these codes are stored together with user data in NAND memory. The codes 
themselves are calculated for each sector of stored data and are stored together with other 
technical information in memory areas called the Spare Area (SA). As each sector is read, 
it is "corrected" with data from its SA, if necessary. 

In addition, NAND memory itself is not durable. The high number of possible writes is 
achieved by two other data conversion mechanisms: gamma and wear leveling. Gamma is 
the bitwise XOR of a special gamma function with the data currently being written. The 
gamma is generated using a conventional LFSR7 and is not an element of cryptographic 
protection but is used to ensure even wear of all memory storage cells. The wear leveling 
mechanism is used to ensure the uniform wear not only of the memory cells within sectors, 
but also of the physical sectors. To achieve this, the concepts of logical sector, page and 
block are introduced. A logical sector, page or block is mapped to actual physical blocks, 
pages and sectors. In the case of sector mapping, we speak of mapping a physical sector 

                                            
6  Open NAND Flash Interface Specification URL: https://media-www.micron.com/-/media/client/onfi/specs/onfi_4_2-
gold.pdf 
7 Cryptographic Boolean Functions and Applications URL: https://doi.org/10.1016/C2016-0-00852-5 

https://media-www.micron.com/-/media/client/onfi/specs/onfi_4_2-gold.pdf
https://doi.org/10.1016/C2016-0-00852-5
https://media-www.micron.com/-/media/client/onfi/specs/onfi_4_2-gold.pdf
https://media-www.micron.com/-/media/client/onfi/specs/onfi_4_2-gold.pdf
https://doi.org/10.1016/C2016-0-00852-5
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with some number, which we will denote as PSN, into a logical sector with the number LSN. 
In the case of blocks, a physical block with the number PBN is completely mapped to a 
logical block with the number LBN. Similarly, at the page level, a physical page PPN is 
mapped to a logical LPN. 

Typical tasks for restoring user data from "raw" bytes include removal of gamma (if used), 
and recovering the physical-to-logical mapping. This is usually done by the NAND controller, 
but in this case, we had no access to it. Analysis of the entropy of the stripped image (Figure 
8) indicated the absence of gamma. 

 

Figure 8. Entropy of the NAND controller image 

However, the image itself did not look like meaningful binary data. It lacked artifacts of any 
physical storage-level file systems. binwalk also found only high-level file system artifacts. 
Accordingly, we concluded we were dealing with a standard mapping from the logical level 
of data representation to the physical level. 

The mapping algorithm is not universal and depends on the vendor. There are solutions for 
recovering user data from "raw" data. Lacking such equipment, we decided to perform the 
data recovery on our own. 

First, we determined where exactly the SA was stored. In our case, it turned out that every 
0x200 bytes of data was accompanied by 16 bytes that clearly had nothing to do with user 
data. This can be seen particularly well at the boundary of the two physical sectors (Figure 
9). 
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Figure 9. The boundary of the two physical sectors in the image 

To analyze the contents of these 16 bytes, we wrote a script that built a binary image 
containing only this data for each physical sector of the original image. We assumed that 
these 16 bytes represented some structure containing service information. By reviewing the 
contents of the resulting file, we were able to partially determine the purpose of the fields of 
this structure. It turned out that in most cases the mapping included only “physical blocks to 
logical blocks” and “physical sectors to logical sectors”. In this case, the SA of a particular 
physical sector stores the logical block number LBN and logical sector number LSN to which 
this physical sector is mapped. The description is presented in Figure 10. 



    

Cinterion® EHS5 3G UMTS/HSPA Module Research | page 18 of 82 

 

Figure 10. Logical block LBN and logical sector LSN 

Then, we wrote a script that builds binary images of logical blocks using data from service 
records. This did not assemble the full logical image, because some sectors appeared to be 
distributed into logical pages (PBNs). Assembling them required a deeper analysis of the 
physical block, page and sector allocation table structure. As a result, it turned out that few 
logical blocks were originally written on the disk. A separate binary file was generated for 
each of them, shown in Figure 11. 

 

Figure 11. Binary files for logical blocks 

Not all blocks contained meaningful information, but we were able to identify blocks 
corresponding to the two main components of the modem: a combination of the FW and 
APP, and the UFS. The FW and APP components were in block number 1. We determined 
this by looking at the strings found in the assembled image (Figure 12). Furthermore, we 
observed that the resulting assembly was for the XMM6260 series modem. 



    

Cinterion® EHS5 3G UMTS/HSPA Module Research | page 19 of 82 

 

Figure 12. Strings found in the image 

The correctness of the constructed image was confirmed by identifying various strings 
related to the modem OS libraries (Figure 13). These strings are located consecutively 
across several sectors, and after our transformations, we got a meaningful set of library 
names. 

 

Figure 13. Modem OS library name strings 



    

Cinterion® EHS5 3G UMTS/HSPA Module Research | page 20 of 82 

The UFS image was easily identified by the characteristic file system header shown in Figure 
14. 

 

Figure 14. FS header 

As a result, when we mounted the resulting image as a FAT FS image, we had access to 
all user MIDlets as well as system files and folders (Figure 15). 

 

Figure 15. FAT FS 

5.2 Analyzing the contents of the UFS 

After reviewing the contents of the UFS, we found that it contained folders and files hidden 
from the user and inaccessible through the MES mechanism, namely .cinterion.internal and 
.cinterion.service. Access to them was restricted directly in the JRC MIDlet code, filtered by 
their name prefix. The code snippet from the JRC module that filters access to these folders 
is shown in Figure 16. 
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Figure 16. Example code from the JRC module 

We discovered that the virtual root ///a:/ corresponds to the physical path /sys/. We also 
extracted information about the path to which user MIDlets are copied after installation and 
the format in which they are stored. The contents of the folder with MIDlets is shown in 
Figure 17. 

 

Figure 17. Contents of the folder with MIDlets 

It was determined that all MIDlets are stored on the device at the path 
/sys/.cinterion.internal/java. Each MIDlet is represented on the FS as four files with the .ss, 
.ii, .ap, and .jar extensions. 

Files with the .jar extension are Java executable files. After analyzing the contents of the 
folder with installed MIDlets, we found that each MIDlet is renamed during the installation 
process. To allow the user to run MIDlets by their name, the file system maintains a mapping 
between the original name of the MIDlet and its alias within a simple database that is stored 
in the _suites.dat file. For example, by analyzing the binary contents of this file, it is clear 
that the file named 00000003.jar (Figure 18) is actually JRC.jar. 
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Figure 18. Contents of the binary file _suites.dat 

The .ap file is the .jad file converted to UTF-16. This file contains information about the 
original name of the MIDlet and the libraries that were used. It may also contain the MIDlet’s 
digital signature. The contents of such a file for the JRC MIDlet are shown in Figure 19. 

 

Figure 19. Contents of the .ap file for the JRC MIDlet 

The .ii file contains information about the MIDlet installation path, the permissions assigned 
during installation, and other service information (Figure 20). 
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Figure 20. Contents of a file with the .ii extension 

Finally, the .ss file contains a description of the Java-level permissions available to this 
MIDlet. An example of the JRC vendor MIDlet permissions description is shown in Figure 
21. 

 

Figure 21. Example of JRC vendor MIDlet permissions description 

It is important to note that this permission set gives unrestricted access to the Java virtual 
machine’s system classes and represents the manufacturer privilege level. Only two MIDlets 
have such privileges: JRC and SLAE. Any user MIDlet must list in its manifest the classes 
and methods that it needs access to at runtime. Part of the manifest for our test MIDlet is 
shown in Figure 22. 

 

Figure 22. Example manifest for our test MIDlet 
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The OTAP_AtParams.bin file deserves special attention. Its name suggests that it may be 
related to OTAP configuration. During experiments, we found out that this file is created 
when the AT^SJOTAP command is executed and contains the settings specified in this 
command. Part of the file created during our tests is shown in Figure 23. 

 

Figure 23. Example of OTAP_AtParams.bin file contents 
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6 Analysis of MIDlets security 

6.1 FTP client security 

During our analysis of documented AT commands, we found that there is a set of AT 
commands dedicated to FTP interactions. 

The FTP service allows downloading and uploading to any internal folder of the modem 
(Figure 24). JAR files can be accessed without restriction, because the FTP service is 
implemented in the code of the JRC MIDlet and operates in the manufacturer security 
domain. Thus, any system or user files, including MIDlets, can be read through this method. 

 

Figure 24. FTP operations 

The API of the aforementioned FTP client is not protected and is publicly described in the 
modem's AT command documentation8. This means an attacker with physical access to the 
device can gain read / write access to any files and directories in the modem's file system, 
including the hidden ones. 

6.2 Getting information about internal FS paths via a static 
method inside a custom MIDlet 

A user MIDlet can call the static methods Configuration.getSystemPropertiesNames() and 
Configuration.getSystemProperty(VAR_NAME). These methods return a list of all 
environment variables and the value of a particular environment variable, respectively. 

JVM environment variables, such as the internal path to where MIDlets are stored, can be 
extracted this way (Figure 25). 

                                            
8 Cinterion® EHS5-E AT Command Set: https://teleofis.ru/upload/iblock/c85/c851073722a1d525ca5d49cf84e1404a.pdf 

 

https://teleofis.ru/upload/iblock/c85/c851073722a1d525ca5d49cf84e1404a.pdf
https://teleofis.ru/upload/iblock/c85/c851073722a1d525ca5d49cf84e1404a.pdf
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Figure 25. JVM environment variables 

Calling the Configuration.getSystemProperty function with the "system.storage_root" 
argument from a user MIDlet returns the native path of all installed MIDlets. For our 
research, this was /sys/.cinterion.internal/java. 

6.3 Getting information about internal FS paths from a user 
MIDlet via a standard FileConnector call 

Any user MIDlet can bypass the access restriction to the FS above the virtual root of the 
virtual FS tree. Access to files on the virtual FS is performed by calling the 

(FileConnection) Connector.open("file:///root:/PATH") 

method, where root is some virtual root of the FS. In our case, using a %2E%2E%2F (URL-

encoded “../”) sequence at the start of a PATH, forms the path “native_path/../PATH” for the 
FS access handler, where native_path is the actual location where the virtual root is 
mounted. 

This occurs due to a flaw in the way the open function processes the path sequence: it first 
checks for any “../” sequences and only then converts the escape sequence to ASCII, 
allowing access to any part of the native FS. 

We also found out that virtual root b:/ is a folder inside virtual root a:/ (Figure 26 and Figure 
27). 
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Figure 26. FS tree 

 

Figure 27. FS tree 

6.4 Changing the security domain of a custom MIDlet 

As mentioned earlier, all installed MIDlets are stored in the modem FS as a set of four files 
under the path /sys/.cinterion.internal/java. When a MIDlet is started, its security domain is 
checked in the .ii file. Then, depending on the specified domain, access rights are assigned 
based on the .ss file. There is no verification of the digital signature when launching a MIDlet 
that has the manufacturer-level security domain. 

Since any user MIDlet can use the aforementioned FileConnection Java class, the MIDlet’s 
security permissions and security level can be escalated. An installed user MIDlet can 
replace its own .ii and .ss files, so that it starts executing in the manufacturer security domain 
(Figure 28 and Figure 29). 
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Figure 28. Running our MIDlet for the first time 

 

Figure 29. Running our MIDlet for the second time 
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7 Modem OS security 

7.1 Selecting interfaces for research 

 

While acquiring the modem firmware, we compromised the confidentiality of its OS data 
through invasive and destructive actions. 

It was important for us to evaluate whether both the confidentiality and integrity of the OS 
image are preserved in the absence of invasive actions. To this end, we considered the 
available software interfaces for interacting with the modem. We identified two of the most 
widespread: the AT command interface and SMS messages. 

The AT command interface is a well-known method for controlling the modem. To exchange 
AT commands with a modem, one simply needs to connect to one of its wired interfaces, 
such as USB. The confidentiality and/or integrity of this interface could be compromised if 
there are security flaws. 

The SMS messaging interface is available on any modem and can be used by knowing the 
subscriber number of the target modem within the cellular operator's network. However, it 
is not always possible to send binary SMS messages due to operator restrictions. Using a 
fake base station allows such limitations to be bypassed. 

7.2 Researching modem AT commands 

We started our research of the modem’s OS security by analyzing the commands available 
at the AT interface level. We decided to rely on fuzzing as our main research approach. 
Accordingly, we needed to: 

• Build a fuzzing corpus from a set of supported commands and their parameters 

• Be able to identify run-time errors and their causes 

The set of AT commands can be determined from the manufacturer's documentation9. This 
method yields a corpus composed of only publicly available user AT commands. However, 
we are interested in getting an exhaustive list of all AT commands available in our modem 
OS image. 

By analyzing the modem’s OS image, we determined that the modem is based on RTOS 
ThreadX ARM11. While the main drivers and platform are written in C, some portions, such 
as the USB stack, are written in C++. 

According to the documentation, the commands available to the user start with the "AT" 
prefix followed by a special character: "+", "^" or "%". The commands themselves have four 
execution modes: read, write, execute, and test (help output). Searching the binary image, 
we identified a data section (Figure 30) consisting of structures corresponding to the 
following representation of AT commands. 

                                            
9 Cinterion® EHS5-E AT Command Set: https://www.euromobile.ru/upload/iblock/ca2/ehs5-e_rn_v04000.pdf 

https://www.euromobile.ru/upload/iblock/ca2/ehs5-e_rn_v04000.pdf
https://www.euromobile.ru/upload/iblock/ca2/ehs5-e_rn_v04000.pdf
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Figure 30. Representation of AT commands in binary image 

By analyzing the custom AT command descriptor's contents, we identified over 200 unique 
commands. Using the test function, we identified exactly which parameters and how many 
parameters each command expects. We found text descriptions of the commands, shown 
in Figure 31, and used them to determine their purpose. 

 

Figure 31. Text descriptions of AT commands 

Among the available AT commands, we managed to find the "AT+XLOG" command, which 
allowed reading information about software and hardware errors. With the help of this 
command, we were able to establish the cause of errors and locate the failure point in the 
modem code. An example of the output of this command is shown in Figure 32. 
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Figure 32. Example output of the AT+XLOG command 

7.3 Vendor-specific AT commands 

After examining the extracted list of available AT commands, we decided to look more 
closely at the mechanisms used to process them. We discovered that, in addition to the 
special characters "+", "^" or "%", the command interpreter also accepted "@". Upon 
receiving that character, the command handler’s lookup mechanism behaved differently. 
Further analysis revealed that the modem supports many vendor-specific AT commands 
that are registered in the OS at the initialization stage (Figure 33). 
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Figure 33. Registration of vendor AT commands 

Registration consists of simply copying static data into a separate memory area (Figure 34). 
When these commands are processed later, this memory is accessed to find a suitable 
handler. 

 

Figure 34. Registration of vendor AT commands 

An analysis of the previously copied data showed that it contained a detailed description of 
each command (Figure 35). For example, we were able to find out the name of a command, 
its purpose, as well as the list of functions it supports and even the version of its 
implementation. 
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Figure 35. Copied data during command registration 

The "SEC Security Interface" command looked particularly promising (Figure 36). It seemed 
to be exactly the kind of command that might be used to interact with the modem at the OS 
level. 

 

Figure 36. sec command 

The features supported by this command, shown in Figure 37, also reinforced this 
assumption. 
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Figure 37. Functions supported by the sec command 

We also discovered that the format of vendor AT commands differs from the usual one. By 
analyzing their handler code, we determined that the general format of a vendor AT 
command is: 

at@tag:(param1, ..., paramN); 

The way these AT commands are called looks similar to calling a function in an interpreted 

scripting language. We discovered some useful commands supported by the corresponding 
interpreter: 

• at@help - display the command help 

• at@E? - get information about the execution error of the last command 

• at@*:? - get a list of all available commands 

• at@tag:$*? - get a list of all available functions supported by the command 

Additionally, we found complete scripts for this interpreter within the OS code (Figure 38). 
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Figure 38. Scripts for the interpreter 

The final step was to identify the parameters of the functions discovered in the sec 
command. This posed no issue, as the complete description of these commands were 
contained in the binary image of the OS (Figure 39). 
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Figure 39. Full description of the commands available via the help command 

For our initial test of the identified vendor command interface (Figure 40), we chose to use 
the state_info function, which was not expected to have any impact on the modem's 
functionality. 

 

Figure 40. state_info function 

Then, we decided to use the hw_details function to get information about the modem 
hardware. However, we received an error instead of the expected modem hardware details 
(Figure 41). 
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Figure 41. Error when executing the hw_details function 

Further analysis showed that many of the functions available through the “sec” command 
verify the current level of user privileges. Figure 42 shows an example of this check for the 
hw_details function. 

 

Figure 42. Privilege level checks for hw_details function 

The privilege level depends on the modem’s current mode. Switching the modem to another 
mode requires a special vendor key (Figure 43) that is tied to the modem’s hardware data: 
its model number, IMEI, and so on. 

 

Figure 43. Using a special vendor key 

Due to the time-consuming nature of calculating the value of this key, the sec command 
proved ineffective for testing the confidentiality or integrity of the OS. Accordingly, we 
decided to explore other available vendor commands. Our attention was drawn to the xl1 
command (Figure 44). 
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Figure 44. xl1 command 

This command had functions with promising names (Figure 45). 

 

Figure 45. Functions of the xl1 command 

The format of these functions (Figure 46) and their descriptions appeared to be related to 
reading and writing binary data in memory. 

 

Figure 46. Format of function parameters 

Our hypothesis was confirmed by analyzing their implementation (Figure 47). These were 
commands for reading/writing RAM. They were not removed from the production firmware. 
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Figure 47. Memory read command 

Using the at@help command, we requested the modem’s help output to check whether the 
xl1 command was available. The output is shown in Figure 48. 

 

Figure 48. Help output with the xl1 command 

Our target command appeared in the list. However, when we tried to execute the xl1 
command, the read and write functions were not executed due to their non-standard 
definition in the firmware code. They had a special "@2" prefix in their names. To figure out 
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the meaning of this prefix, we re-examined the AT command processing algorithm. Our goal 
was to determine the conditions under which a function called within a command might not 
be executed. 

 
We discovered that functions within a vendor-specific AT command can start with the “@” 
symbol followed by a numerical value from 0 to 2. This value indicates the level of user 
privileges required to execute these commands. Our privilege level was hard-coded in the 
modem’s OS code at the static address 0x600D0AD0. Since it is not assigned based on 
software commands or special hardware settings, there is no legitimate way to change it in 
the current build. 

 
The modem operates with three privilege levels: 0, 1 and 2. These levels not only restrict 
access to functions within vendor-specific commands, but also govern the availability of the 
commands themselves. 

 
We found that the privilege levels required for outputting the help information for commands 
may differ from what is required for executing those commands. Information about the 
required privilege levels is stored in the descriptors of each command. Checks are 
performed whenever a vendor-specific AT command processing function is called (Figure 
49). 

 

Figure 49. Checking the required privilege levels 

Based on the extracted information about the configuration and location of settings for 
accessing vendor-specific AT commands and their functions, we managed to reconstruct 
the list of all vendor-specific commands implemented in the modem OS (Table 1). 

Command 
name 

Description from firmware Help available? Privilege level 

ufr UMTS RF no 2 

utif UMTS test interface  no 2 

getif GSM EDGE test interface  no 2 

gcal 2G RF driver test and calib. interface  no 2 

ucal UMTS calibration interface  no 2 

speed full speed test interface  no 2 

prodif Production Interface (prodif)  no 2 

prodctrl Production Control Interface (prodctrl)   no 2 

xl1 XL1 trace interface v.1.00.00  yes 2 

ver Ver test interface v.01.00.0  yes 1 

pmu PMU API AT test interface v.00.00.0  yes 1 

pow POW API AT test interface v.00.00.0  yes 1 

ts time services test interface v.01.00.0  yes 1 

meas meas debug interface v.1.00.00  yes 1 

utasensor UTA SENSOR interface v.1.00.00  yes 1 

utabm UTA BM debug interface v.1.00.01  yes 1 

init Init test interface v.01.00.0  yes 1 

uicc UICC GTI SUPPORT v.1.00.00  yes 1 
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bmmon BMMON interface v.1.00.00  yes 1 

cdd CDD test interface v.2.00.00  yes 1 

utacdset DEPRECATED please use at@cdd v.2.00.00  yes 1 

vsyscal VSYS calibration interface v.1.00.00  yes 1 

ihwcal IHW calibration interface v.1.00.00  yes 1 

tbatcal TBAT calibration interface v.1.00.00  yes 1 

tpcbcal TPCB calibration interface v.1.00.00  yes 1 

trfcal TRF calibration interface v.1.00.00  yes 1 

tbbiccal TBBIC calibration interface v.1.00.00  yes 1 

sec sec v.0.00.01  yes 1 

usbmwtestfw USB Middleware - Test Framework v.0.00.03  yes 1 

ceu CEU Test Interface  no 2 

i2c I2C interface  no 1 

mipihsi GTI for MIPI  no 2 

pcl pcl interface  no 1 

xrlc GPRS-RLC functions provided to GTI Interface  no 2 

sic SIC Interface  no 2 

Table 1. List of vendor-specific commands 

All the commands shown in the table require either level-2 privileges or level-1 privileges. 
Note that the xl1 command is the only command whose functions require level-2 privileges 
to run, but its help output can be viewed by a user with level-1 privileges. That's why we can 
see this command in help output but are unable to execute the corresponding functions. 
Given the presence of the xl1 command, we could completely bypass the key checking 
restrictions in the sec command’s functions if we could use its functions for reading and 
writing memory functions. We conclude that privilege levels 1 and 2 correspond to "OEM" 
and "Vendor" privilege levels, respectively. 

7.4 Fuzzing AT commands 

We used a Raspberry Pi 3 to build our fuzzing stand (Figure 50). We communicated with 
the AT interface via USB, and were able to perform a hard reboot of the modem using the 
appropriate hardware pin. 
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Figure 50. AT-command fuzzing stand 

We built the fuzzing corpus using data obtained from our analysis of the AT commands. To 
develop a strategy for corpus generation and mutation, we identified AT command attributes 
that, if changed, could lead to execution errors: 

1. Number of command parameters 
2. Parameter type: string, number, binary value 
3. Parameter value range 

The mutation was performed by changing these parameters: creating or removing variables, 
altering the type of each variable, and modifying its range of values. The initial probability of 
these changes for each AT command was set at 1/2. However, this probability was not fixed; 
it varied depending on the results of a single corpus test of a particular AT command. After 
each corpus test, we evaluated the number of command execution errors on the modem as 
well as their execution time. The mutation probability for each attribute was adjusted up or 
down accordingly. As a result, each AT command had a unique probability that its attributes 
would change. 

During the fuzzing process, we had to discern when the modem was in an operational state. 
Error detection was based on three conditions that allowed us to reliably identify the current 
state: 

1. AT interface unavailable 
2. No response from the AT interface 
3. The last line read is not one of the following: ERROR, CMD ERROR, NO 

CARRIER, OK, ABORTED. 

If any of these tests failed, it was assumed that an error had occurred in the execution of 
the AT command. The cause of the error could be extracted using the AT+XLOG command. 
All commands sent between two detected errors were collected in separate logs so that the 
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result could be repeated on the same data set. A hard reboot of the modem ensured that 
the previous error did not affect the test results. 

After all the preparations, the fuzzing stand was switched on and left to run for several 
months. Many errors were recorded as the result of fuzzing. Most of these errors were 
software exceptions, which means that they were not exploitable. However, we were able 
to detect a stable memory access error when the AT+XMUX command was executed. 
Detailed analysis allowed us to discover a heap overflow vulnerability during the handling of 
this command. 

The command takes 11 parameters as input. Each of these parameters is a single-byte 
number. Each received AT command goes through a conversion phase at the beginning of 
its handler where the input parameters are converted from a string to the required data type, 
which is a number in this case. The conversion is performed with help of a library function 
(Figure 51) that takes a pointer to a buffer containing a string with the AT command and the 
number of parameters as input. The third parameter returns the conversion result as an 
array of data representing the result. The software error can be found in this function. 

 

Figure 51. Library function performing data conversion 

The function itself is not supposed to convert a string with more than 11 parameters (Figure 
52). 

 

Figure 52. Limit on the number of parameters 

Each of these parameters must be limited in size by the intermediate buffer length. This 
buffer is used to perform the string-to-number conversion of each of the parameters 
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individually. Its size is hard coded in the function code. It is also equal to 11 bytes allocated 
on the heap (Figure 53). 

 

Figure 53. Limit on the size of parameters 

Inside the function there is a check that the number of parameters in the processed string 
does not exceed the expected number (Figure 54). 

 

Figure 54. Checking for the expected number of parameters 

However, the function does not check if the length of a parameter is greater than the size of 
the buffer allocated to convert it to a number (Figure 55). In this case, each parameter of 
the input string is copied until the "," delimiter is encountered or the end of the input string 
is reached. 
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Figure 55. Error in the parameter length check 

The bytes of the input parameter are added to the same buffer. The first parameter of an AT 
command can overflow this buffer if its length exceeds 11 bytes. 

Among all AT command handlers, this library function is used only in the AT+XMUX 
command handler. This command accepts only numbers as data, which are also checked 
during processing. Accordingly, we cannot exploit this error to achieve heap overflow with 
arbitrary binary data. We therefore decided to search for another option to implement a full-
blown arbitrary code execution exploit. 

7.5 SMS message processing 

We decided to analyze the security of SMS message processing, starting from the moment 
the message is received. To achieve this, we needed to reconstruct the algorithm for 
processing SMS messages, tracing the process from receiving the raw message from the 
DSP to its final processing. Several processes10 are involved in SMS message processing, 
as illustrated in Figure 56. 

                                            
10  In the ThreadX operating system (now Azure RTOS ThreadX), there is no concept of processes, instead, it operates 
on threads. However, since the OEM manufacturer uses the term "process" in the firmware we were studying, we will also 
use this term throughout the text of the article to maintain consistent terminology. 
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Figure 56. Processes in SMS handling 

The first process to handle a received SMS message is the MNM process. It is responsible 
for checking whether the received SMS message conforms to the SMS PDU format. If the 
body of the received SMS message complies with the standard, it is sent to the next process 
(Figure 57). It is important to note that this process, shown in Figure 56, not only is 
responsible for processing SMS messages, but also participates in the processing pipeline 
of various messages and events coming from the mobile network. 
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Figure 57. Processing the body of a received SMS 

In this case, the only interesting function for us is one that can be affected by modifying the 
SMS message content, i.e. the function responsible for checking the message structure. It 
contains simple checks to ensure that field values of the received SMS comply with expected 
values. Each of these checks may interrupt the processing of the received SMS. Among all 
the fields that can be modified, there is one that deserves attention, namely the OA field 
(Figure 58). 
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Figure 58. OA field 

According to the standard, it is assumed that the OA (Originating Address) field stores the 
number of the sender of the message (Figure 59). The length of this number must not 
exceed 0xC bytes, and there is a corresponding check in the code. 

 

Figure 59. Contents of the OA field according to the standard 

However, this check is performed only after the data from the message has been processed. 
There is no such check within the handler itself (Figure 60). 
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Figure 60. No check of the length of the number of the message sender 

Although the parsing of the message header is interrupted, it is possible to copy up to 0x80 
bytes into a buffer that should not contain more than 0x2A bytes. This is a software bug in 
the lowest-level driver that handles SMS messages. However, in this case, the error does 
not result in a vulnerability. The buffer with this copy error is part of the received SMS 
message descriptor structure with the size 0xF4, and it is located almost at the beginning at 
offset 0x2A. If the structure that stores the processed SMS message header had a different 
format, then overflow would be possible. 

After all header fields have been checked, the received SMS is passed to the MDH process 
for further processing. This handoff is accomplished by sending the 0x2E002A signal (Figure 
61). 
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Figure 61. Transmitting the message further on via signal 0x2E002A 

This signal is handled by the MDH process (Figure 62). The SMS message is processed by 
the ATC process via the 0xFE01B7 signal (Figure 63). 

 

Figure 62. Signal processing by the MDH process 
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Figure 63. Passing the message to the ATC process via the 0xFE01B7 signal 

This signal is further processed in the callback handler of the UTACAT process, which 
UTACAT itself registers when it begins running. This callback puts the SMS message into 
the message queue of the UTACAT process (Figure 64). 

 

Figure 64. Signal processing in the callback handler of the "UTACAT" process 

Next, UTACAT processes the body of the received SMS message (Figure 65). In this case, 
right from the start, there is an unconditional check to ensure that the received SMS 
messages comply with the OTAP and ULP protocols11. Besides these two protocols, the 
modem only processes ordinary SMS messages. 

                                            
11 https://www.openmobilealliance.org/release/supl/V1_0-20070615-A/OMA-TS-ULP-V1_0-20070615-A.pdf 

https://www.openmobilealliance.org/release/supl/V1_0-20070615-A/OMA-TS-ULP-V1_0-20070615-A.pdf
https://www.openmobilealliance.org/release/supl/V1_0-20070615-A/OMA-TS-ULP-V1_0-20070615-A.pdf
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Figure 65. SMS message handling by the UTACAT process 

7.6 OTAP protocol analysis 

In the OTAP protocol, data is transmitted using SMS messages that have special values for 
the Class and PID fields (Figure 66). 

 

Figure 66. Data transfer in the OTAP protocol 
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OTAP messages are ASCII text contained within the SMS message body. An example of 
such a message is shown in Figure 67. 

 

Figure 67. Example of an OTAP message 

The initial processing of the received message takes place in the UTACAT process. This 
process is responsible for decoding the received SMS message and sending it to the 
process that handles the OTAP protocol. 

Only two functions responsible for decoding the OTAP protocol can be affected. The first is 
the function that converts the received message to text format (Figure 68). 

 

Figure 68. Function for converting the received message to text format 

The second is used to check that the OTAP SMS ID is present in the message header 
(Figure 69). 

 

Figure 69. Checking whether the OTAP SMS ID is present in the message header 

During the research, we did not find any errors in the implementation of these two functions. 
Moreover, the transmission protocol itself is trivial, so we proceeded to analyze the functions 
that handle the processing of the received message. 

The OTAP message handler is located in the native MIDP library implementation of the JVM 
process, i.e. the Java interpreter. The JVM process itself greets the researcher with a 
wonderful message (Figure 70). 

 

Figure 70. Surprise log message 

And it instantly reveals all the secrets about the location of MIDlets and other system files 
and folders (Figure 71). 
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Figure 71. Storage data for MIDlets and other system files and folders 

The code for handling a received OTAP message has quite a lot of comments. This allowed 
us to quickly determine that if OTAP was not previously activated by executing the 
AT^SJOTAP command, then the received message would not be processed (Figure 72). 
Activation involves creating a special OTAP settings file in the UFS. Since our goal was to 
analyze protocol security without putting the system into special operating conditions, we 
decided to proceed with analyzing the implementation of the ULP protocol. 

 

Figure 72. OTAP activation check 

7.7 ULP protocol analysis 

In addition to the remote provisioning of MIDlets via SMS messages using the OTAP 
protocol, the modem also offers geopositioning capabilities using the SUPL subsystem12. 
This subsystem facilitates the exchange of special messages between H-SLP (Home SUPL 

                                            
12 https://www.openmobilealliance.org/release/SUPL/V2_0-20120417-A/OMA-AD-SUPL-V2_0-20120417-A.pdf 

https://www.openmobilealliance.org/release/SUPL/V2_0-20120417-A/OMA-AD-SUPL-V2_0-20120417-A.pdf
https://www.openmobilealliance.org/release/SUPL/V2_0-20120417-A/OMA-AD-SUPL-V2_0-20120417-A.pdf
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Location Platform) and SET (SUPL Enabled Terminal). According to the specification, the 
modem functions as a SET object. An example of this interaction is shown in Figure 73. 

 

Figure 73. Interaction via the ULP protocol 

Messages are exchanged using the ULP binary protocol. In this protocol, data is transmitted 
in the GSM network via PUSH messages using WAP stack protocols13. A typical ULP 
message is illustrated by the SUPL INIT message (Figure 74). 

                                            
13  UserPlane Location Protocol, Open Mobile Alliance™: https://www.openmobilealliance.org/release/SUPL/V2_0_5-
20191028-A/OMA-TS-ULP-V2_0_5-20191028-A.pdf 

https://www.openmobilealliance.org/release/SUPL/V2_0_5-20191028-A/OMA-TS-ULP-V2_0_5-20191028-A.pdf
https://www.openmobilealliance.org/release/SUPL/V2_0_5-20191028-A/OMA-TS-ULP-V2_0_5-20191028-A.pdf
https://www.openmobilealliance.org/release/SUPL/V2_0_5-20191028-A/OMA-TS-ULP-V2_0_5-20191028-A.pdf
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Figure 74. SUPL INIT message 

The ULP protocol includes the ability to fragment the transmitted message to allow the 
transmission of large binary messages over a limited SMS message channel at the PUSH 
layer of WSP messages. On the SET side, the WSP protocol provides indexing for 
fragmented SMS message transmission. The first SULP message contains the size of the 
transmitted message. 

An example of the first SMS message is shown in Figure 75. An example of subsequent 
SMS messages is shown in Figure 76. 
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Figure 75. Example of the first SMS message 

 

Figure 76. Example of subsequent SMS messages 

The ULPSizeFromPacket variable is responsible for the size of the entire ULP packet, and 
wapTpduLen is responsible for the size of the received WAP message. WAP message 
processing consists of copying ULP message fragments into a buffer whose size is equal to 
ULPSizeFromPacket. 

While analyzing the driver that is responsible for handling the fragmentation of ULP 
messages, we discovered a heap overflow vulnerability. 

According to the transmission protocol, the ULPSizeFromPacket and wapTpduLen 
variables are calculated independently. These variables are interrelated only in the algorithm 
for receiving WAP messages: the sum of the sizes of all received WAP messages in a UPL 
message must not exceed ULPSizeFromPacket. But the algorithm used to receive WAP 
messages does not check this condition. Therefore, a received WAP packet of size 
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wapTpduLen will be copied to a buffer of size ULPSizeFromPacket (Figure 77). This is a 
classic heap-based buffer overflow. 

 

Figure 77. Heap overflow 

After generating an appropriate SMS message, we managed to cause a heap overflow error 
on the modem in one attempt, resulting in a hard reboot. To determine the cause of the 
reboot, we used the already known AT+XLOG AT command for reading error messages 
(Figure 78). 

 

Figure 78. Reason for the reboot 

The resulting dump made clear that the R0 register contained data that we controlled. Thus, 
we confirmed our ability to not only overflow the heap, but also embed our data into 
executable code. 

However, we had no way to get a dump of memory at the moment of the crash. To 
understand whether the discovered vulnerability is serious or just another non-exploitable 
BoF, we had to solve the problem of reading the RAM. 

7.8 How to read memory very, very slowly 

After analysing the code at the address specified as the crash location in the AT command 
dump, we clearly understood how our data ended up in the R0 register (Figure 79). The 
crash consistently occurred in the malloc() function. The cause of the crash was an attempt 
to dereference an unmapped address, resulting in a memory access error and, 
consequently, a hardware fault. 
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Figure 79. The reason for our data appearing in the R0 register 

To understand why, we had to do a deep dive into the memory manager of the modem OS. 

7.8.1 HeapFree and HeapBase structures 

All heap memory is segmented into chunks. Each chunk contains a pointer to the next 
chunk, some user data (or unoccupied memory), and an indication of whether the chunk is 
currently occupied or free. 

A chunk is considered free if its heap_free_magic value is 0xFFFFFFEEEE. If the chunk is 
occupied, then instead of heap_free_magic, the field contains a pointer to the global 
structure that describes the current state of the whole heap (HeapBase) (Figure 80). The 
full list of fields in this structure can be found in the ThreadX operating system headers. 
These headers are publicly available14. 

 

Figure 80. Heap structure 

The search for a suitable free chunk is performed by traversing all free chunks, starting from 
the first one. The pointer to the first free chunk is stored in the HeapBase structure. The size 
of the current chunk is calculated by the difference of addresses between the next and the 
current chunk. 

In the malloc() function, the search for a suitable free chunk involves a sequential traversal 
of a unidirectional linked list. If our SMS message exceeds the size of the allocated chunk, 
it overwrites the data in the next chunk when copied, corrupting it. However, this corruption 
did not immediately cause a software error or crash the modem. The OS continued to 
function, allowing the malloc() function to be called again, which involved traversing all 
chunks starting from the first free one. 

Thus, while executing malloc(), there may be a moment when a free chunk is placed before 
the corrupted chunk. When the function attempts to move to the next chunk using the link 

                                            
14 https://github.com/eclipse-threadx/threadx/blob/0d308c7ae62085e68c7aa0a516f664c39e9a8407/common/inc/tx_api.h#L632C36-

L632C36 

https://github.com/eclipse-threadx/threadx/blob/0d308c7ae62085e68c7aa0a516f664c39e9a8407/common/inc/tx_api.h#L632C36-L632C36
https://github.com/eclipse-threadx/threadx/blob/0d308c7ae62085e68c7aa0a516f664c39e9a8407/common/inc/tx_api.h#L632C36-L632C36
https://github.com/eclipse-threadx/threadx/blob/0d308c7ae62085e68c7aa0a516f664c39e9a8407/common/inc/tx_api.h#L632C36-L632C36
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from the corrupted chunk (Figure 81), the data in the R0 register is dereferenced to an 
address we control. 

 

Figure 81. Executing malloc() 

If the data is read from a valid address available in the modem's memory, no error occurs, 
and its value is stored in the R0 register. 
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Figure 82. Reading data 

However, a memory access error occurs if the address in R0 points to an unmapped 
memory location. In this case, the R0 register contains the last successfully read data. In 
our case, it is the data from the address we placed in the WAP message body. 

7.8.2 Memory map 

To understand which addresses can be considered valid, we needed to construct a map of 
the modem memory. To do this, we used the vendor-specific command to get information 
about memory regions: AT@init:get_mem_info(). The following table shows the resulting 
memory map. 

Start region End region Description 

0x00080000 0x000A0000 PSI RAM 

0x62B80000 0x63E7FFFF Code Section 

0x60000000 0x62694C48 Ram Section 

0xFFFF0000 0xFFFF1010 Mapped PSI RAM 

0xFFFF2000 0xFFFF4000 Mapped PSI RAM 

0x00400000 0x00500000 FLASH 

0x18000000 0x19000000 HW 

0xE0000000 0xF0000000 HW 

Table 2. Memory map 
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Note that the handler of the above command reads memory regions from a table that is 
hardcoded in the firmware. 

7.8.3 Reading memory via a heap overflow 

Once we figured out which addresses were mapped, it became clear what kind of memory-
read strategy we should use. 

If we read data from the code section, the data would represent ARM machine instructions, 
and therefore, there will be unmapped addresses in memory. Thus, we can read from any 
address in the code section, including the BootROM (Figure 83). 

 

Figure 83. Reading a code section 

Reading the data section required a slightly different approach (Figure 84). In the data 
section, unlike the code section, 4-byte words can potentially represent a mapped address 
in the modem's memory. In this case (and if the modem’s CPU configuration allows it), 
unaligned addresses can be read instead of an address aligned by 4. If any cyclic 
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permutation of 4 bytes of read data is a mapped address, the real value stored at this 
address will not be read in the described manner. However, we have not found such 
addresses. 

 

Figure 84. Reading the data section 

As a result, we were able to read all the memory regions we were interested in. Most 
importantly, we discovered the environment context of the WAP SMS buffer overflow. It 
should be noted that the reading speed achieved using the described algorithm was only 7 
b/min, so it took several weeks to read all the memory we wanted to. 

7.8.4 Getting the overflow context 

The method of reading memory described above assumes that the modem will reboot after 
each read of 4 bytes from the data section. However, because the system is loaded 
sequentially, the layout of the heap in the region where the overflow occurs never changes. 
Moreover, we found that the overflow itself always occurs at the same address! 

This was possible because we achieved the overflow using the value of 1 for the 
ULPSizeFromPacket variable. This means that the very first free chunk suits us. 

Due to the specifics of the OS boot process, the heap always has a small chunk of 8 bytes 
that is not suitable for any process (no malloc() calls request such a small amount of 
memory). Simultaneously, there are chunks allocated in memory that will not be freed until  
the OS shuts down, so this 8-byte chunk is never defragmented. 

Every time we reboot the modem, we cause an overflow at the same memory address. 
Because we already know the address of the buffer overflow, we do not need a memory 
read primitive based on the discovered vulnerability. 
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7.9 Write primitive 

Once the overflow context was established, we proceeded to the task of finding the write 
primitive. This primitive is often implemented by manipulating pointers to neighbouring 
chunks in linked lists with the accompanying injection of addresses into the global heap 
descriptor structure. 

However, in our case the heap uses a single-linked list, and the only pointer we can control 
in the HeapBase structure is the pointer to the first free chunk in the heap. 

Therefore, we needed to identify which data structures we could control that would let us 
write to memory, and to learn how to assemble these structures in memory. 

We started to analyze the available functions affected by chunk overflow on the heap: the 
malloc() and free() functions. We needed to find a code fragment that would write to an 
address whose value could be affected by data from a WAP message. 

7.9.1 Free function 

The modem OS is a multitasking operating system: the heap memory pool is shared among 
many processes. To ensure that access to shared resources is consistent, the HeapBase 
structure stores a pointer to the process currently working with the heap. The free() function 
checks if the current process needs memory after the memory is freed (Figure 85). 

 

Figure 85. The free() function 

This action is crucial for us, because it is the only place in the entire code of the free() and 
malloc() functions that writes to a memory address extracted through a double dereference. 
This is exactly what we were looking for in order to write to an arbitrary memory address! 
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A situation may arise where a process owns the heap memory pool and has a previously 
unprocessed memory allocation request. After returning the just freed memory to the pool 
of free memory, the free() function attempts to find a suitable free chunk of memory for 
allocation. Only if a suitable free chunk is found, the free() function update the Thread 
structure of the current process with information about the chunk. 

This causes a pointer to the found free chunk to be written to the address specified in the 
Thread structure at offset 0x80. 

Instead of passing the original Thread structure of the current process to the free() function, 
we could provide a pointer to a crafted data structure that mimics the Thread structure. This 
makes it possible to write to any address in memory. Now we aren’t writing some arbitrary 
piece of data, but a pointer to a free memory chunk. This was enough to intercept the flow 
of execution. 

But the pointer to the Thread structure is taken from the HeapBase structure located at a 
static address in memory. The pointer to the HeapBase structure is contained in each 
occupied chunk at offset +4 and is used to access the HeapBase structure. 

Consequently, if we overwrite that pointer with our data, we can completely replace the 
HeapBase structure that the free() function will work with, and, therefore, the Thread 
structure as well. 

Next, we needed to understand the inner workings of these two structures and to find out 
which fields must be filled in (Figure 86) for the execution of the free() function to reach the 
code we were interested in. 
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Figure 86. Our objective 

7.9.2 Thread structure 

The free() function uses only some of the fields of the Thread structure (Figure 87). 
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Figure 87. Fields of the Thread structure in the context of the free() function 

The size of the chunk the process tries to allocate is at offset 0x7C. This is the chunk that 
the free() function will try to find in the heap. We can use this field to control which chunk is 
assigned. This is important because our WAP SMS data is located on the heap. And if we 
choose a suitable memory allocation size in the free function, we will be able to write not 
only the address of a suitable free chunk to an arbitrary address, but the address of a chunk 
that contains our data! 

The address where the pointer to the chunk is to be written to the heap if it is allocated 
successfully is located at offset 0x80. Here we can have an arbitrary write address. 

Data at offsets 0x74 and 0x78 can be rewritten during the execution of the free() function to 
values obtained by dereferencing current pointers. However, if there is a pointer to our 
Thread structure at offset 0x74 (verifying that the heap is still occupied by the same 
process), then nothing will be written to offsets 0x74 and 0x78. 

It is also important to note that a zero is written to offsets 0x6C and 0x88 (Figure 88). These 
addresses also need to be valid, and writing to them must not cause the OS to fail. 
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Figure 88. Offsets 0x6C and 0x88 in the Thread structure 

No other offsets in this structure are used during execution of the free() function. Therefore, 
we only need to imitate a Thread structure from offset 0x6C to offset 0x88. 

7.9.3 HeapBase structure 

After solving the question of how to fill in the fields of our simulated Thread structure, we 
needed to analyze the HeapBase structure. As shown in the table below, the free() function 
only uses a few fields of this structure. 

Index in the HeapBase 
structure 

Description 

0x00 Magic of this structure: 'BYTE' 

0x02 Size of available free memory in the heap now 

0x05 Pointer to the next free chunk 

0x09 Pointer to the beginning of the Thread structure (we are imitating 
only a part of the thread structure, so the pointer should be shifted 
accordingly). 

0x0A Number of requests to perform in the search for free chunks for OS 
processes. In our case, the value is 1. 

Table 3. Fields of the HeapBase structure used in the free() function 

The size of the available memory at offset 0x02 must be larger than the memory that the 
free() function will try to allocate for the simulated thread (offset 0x7C of the Thread 
structure). 
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The pointer at offset 0x05 must not only point to a free chunk, but also be large enough to 
be allocated to our simulated thread (offset 0x7C of the Thread structure). 

No other offsets of this structure are used during execution of the free() function. 

After preparing the structures, we had to develop an algorithm for forming these structures 
in the modem memory by sending WAP messages. 

The process of receiving and processing WAP messages involves not only WAP protocol 
algorithms, but also the algorithm for processing free and occupied chunks as memory for 
messages is allocated and released. Further analysis of these algorithms helped us form 
the necessary Thread and HeapBase structures in the modem memory. 

7.9.4 Strategy for handling free and occupied chunks 

The free() and malloc() functions are called several times during the processing of incoming 
WAP SMS messages. Therefore, even if an overflow is achieved, we need to ensure that 
several conditions are met: 

• No errors occur during the execution of the free() and malloc() functions. 

• Our Thread and HeapBase structures are created and persist. 

The memory manager's handling of free and occupied chunks directly influences whether 
these requirements are satisfied. We already knew the following: 

• The search for a free chunk starts from the pointer to the first free chunk in the 
HeapBase structure (offset 0x05). 

• The size of the current chunk is calculated as the difference between the address 
of the next chunk and the current chunk. 

• Only a chunk whose heap_free_magic is equal to 0xFFFFFFEEEE is considered 
free. 

7.9.5 Selecting a new chunk 

Next, we analyzed what happens when a new chunk is allocated by the malloc() function. 
During allocation, the user data is overwritten with zeros. The first chunk of a suitable size 
is always allocated. 

If the size of the chunk is too large (exceeds the size of the user data by 20 bytes), it will be 
fragmented: another chunk will be created right after the end of the user data. 

If the allocation process identifies a free chunk but it is smaller than the required size, and 
the next chunk is also free, then a defragmentation process takes place: the two free chunks 
are merged into one. 

7.9.6 Releasing an occupied chunk 

When releasing a chunk with an address less than the current address of the first free chunk 
in the HeapBase buffer (offset 0x05), its address is updated as the new address of the first 
free chunk in the HeapBase buffer. 

Therefore, the first free chunk in the heap is always allocated if the SUPL message size is 
always set to 1. If the function for releasing memory is called in time, then sending different 
SUPL messages will result in writing to the intermediate buffer located at the same address. 
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All that remained for us to do was to call free() and malloc() in the required sequence. 

7.9.7 Processing fragmented SMSes 

We noticed a condition where the algorithm for receiving WAP SMS messages writes data 
to the same memory addresses. If the actual sizes of the sent SMS messages are different, 
we can shape our structures so that we don't have to overwrite the previously received data. 

However, the size of a single SMS message is not large enough to allow us to create the 
necessary structures. Therefore, we had to consider the possibility of using the WAP 
message fragmentation algorithm. This way we could deliver all parts of the required data 
structures. 

Each WAP SMS contains a sequence number in its header. When the first WAP SMS 
message is received, a buffer of size ULPSizeFromPacket is allocated on the heap, into 
which all WAP message fragments are copied. However, the code does not check whether 
the sequence number of the current WAP message has already been used. 

This way of processing allows the first message to be followed by the last one. Accordingly, 
it is possible to overflow the ULP message buffer with an arbitrarily large amount of data. In 
this case, we control the pointer inside the overflowed buffer by changing the offset of the 
next SMS message by sending the current SMS of the desired size: during copying, the 
pointer is moved by this amount. Each subsequent ULP message fragment is copied into 
memory immediately after the previous one. 

Thus, we can try to form the required data structures by using three kinds of WAP messages: 

Message type Message properties 

First WAP SMS message The size of the entire ULP message is taken from it, and the 
malloc() function is called to allocate a buffer to store the entire 
SUPL message. 

Any message that isn't the 
last one 

The contained data (ULP message fragments) is simply copied 
after the data from the previous message (previous ULP message 
fragment) into the buffer allocated when the first message was 
processed. 

Last message The contained data is also copied after the data from the previous 
message into the buffer allocated when processing the first 
message. Then the collected ULP packet data is passed to its 
handler, and the free() function is called. 

If we send a second message with the same index as the first fragmented WAP SMS 

message, the code will check if a buffer has already been allocated for the ULP message. 
Then, a call to the free() function is made to free it - a new ULP message has been sent, so 
there is no point in keeping the old one (Figure 89). 

The previously allocated buffer is in the first free chunk, so it will be allocated again in the 
next call to malloc() as it has the lowest address among all free chunks. The malloc() function 
is called again for the first fragment of the just received ULP message. However, due to the 
inner workings of the memory allocator described above, the same buffer will be allocated! 
This will result in the same buffer being allocated for all the first WAP SMS messages. 



    

Cinterion® EHS5 3G UMTS/HSPA Module Research | page 71 of 82 

 

Figure 89. Specifics of sending fragmented WAP messages 

The buffer for our first WAP SMS message is always allocated in the same memory location, 
so only the first 4 bytes of our ULP message will be zeroed out. 

In a WAP SMS, we set the ULP message size to 1. Consequently, DWORD alignment 
means that the size of the buffer allocated in the malloc() function will be 4 bytes regardless 
of the size of the chunk that it will be placed in. And thanks to fragmentation, we can be sure 
that an overflow will overwrite the next chunk with our data. This is very important because 
in order for the entire chain of free() and malloc() calls to work, it must end with a call to 
free() on a chunk whose header data was overwritten by a pointer to our HeapBase 
structure. We can satisfy that requirement if we are able to control the header data of free 
chunks. 

Using the previously described methods of writing to the heap, it was possible to not only 
store structures or code on the heap via WAP SMS messages, but also add a free chunk to 
the chain of all heap chunks. The very first WAP SMS message overwrites the pointer in the 
next chunk, which is already in the chain. We were able to overwrite this pointer with the 
correct address of the next chunk. The resulting crafted chunk resides inside our big chunk 
and will be the first to be found during the search for free chunks due to its location in the 
memory. 

As a result, after creating the necessary data structures, free chunks and code in the 
modem’s memory, we were able to start sending WAP messages again with the index 
corresponding to the first SMS in order to rewrite the data in the previously created free 
chunk. This ensured that the occupied chunk's HeapBase pointer was replaced with ours. 

Now that we have created our own free chunk in the buffer, we need it to get claimed. And 
we must ensure this happens before we send a new SMS message that will overwrite that 
chunk of data. The algorithm for processing the received WAP message will help us achieve 
this (Figure 90). 
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Figure 90. Algorithm for processing a received WAP message 

7.9.8 Specifics of processing each WAP message 

The message is copied to a temporary buffer allocated on the heap when each WAP 
message begins to be processed (Figure 91). From there, it is then copied to the buffer for 
the entire ULP message created during the processing of the first WAP SMS. 

 

Figure 91. Copying a WAP message to a temporary buffer allocated on the heap 

In this case, if the WAP message was not the last one, only the allocated temporary buffer 
is released after copying (Figure 92). The buffer containing part of the ULP message 
remains occupied. 

 

Figure 92. Releasing the allocated temporary buffer 

In the figure above, you can see the free() function that we wanted to use. When receiving 
another WAP SMS message, we copy it to the free chunk we created inside the buffer. To 
do this, we sent a WAP SMS message with the data size equal to the size of the free chunk 
created inside our buffer. The malloc() function will start searching after this free chunk for 
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a suitable chunk to process the incoming WAP SMS. Thus, malloc() is guaranteed to return 
the pointer to our chunk! 

All that remained to do was to make the current offset within the ULP message buffer point 
exactly to the beginning of the header of the newly allocated chunk. 

7.9.9 Putting it all together 

Thus, the final algorithm for exploiting the vulnerability consists of the following steps: 

1. Send a WAP SMS message with the index of the first message. 

2. By overflowing the ULP message buffer we overwrite the pointers and data of the 

next chunk and create free chunks whose size is 0x10 bytes inside our SUPL 

message buffer. It is important that there is an occupied chunk after the free 

chunk, otherwise defragmentation will happen! 

3. Send the next WAP SMS message fragment. This message contains the 

HeapBase and Thread structures. 

4. Send another WAP SMS message with the index of the first message. This time 

the message size should be large enough so that the next SMS fragment 

overwrites the beginning of our free chunk. 

5. Send another SMS fragment (but not the one with the last index!). The size of the 

message must be of 8 bytes. These 8 bytes will overwrite the pointer to the 

HeapBase structure in our chunk. 

6. When the WAP message processing function exits, the free() function is called 

and uses our HeapBase and Thread structures. 

This procedure makes it possible to execute arbitrary code on the modem in just 4 SMS 
messages. 
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8 Post exploitation of network level vulnerabilities 

8.1 Executing AT commands 

We were finally able to unlock vendor-specific AT commands after we managed to write an 
arbitrary modem memory address as the value of our chunk pointer. To do this, we had to 
change our privilege level, which is located at the static address 0x600D0AD0. Verification 
of the current privilege level is done by overlaying a binary mask that corresponds to the 
level. Therefore, to elevate our privileges in the modem's AT console, we had to write some 
large number at the memory address 0x600D0AD0 (Figure 93). 

 

Figure 93. Privilege escalation 

We can run the "at@help" command to ensure that all vendor-specific AT commands are 
unlocked. We see the full output of the help command only if the commands are unlocked 
(Figure 94). 

 

Figure 94. Vendor AT commands syntax 

We can now get a list of all available vendor-specific AT commands along with their 
descriptions (Figure 95). 
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Figure 95. List of all available vendor AT commands 

And finally, we read the modem memory without registering in our GSM network and without 
using any special ULP SMS (Figure 96). 

 

Figure 96. Reading the modem memory 

As a result, we have a full-fledged console for reading and writing data to the modem RAM, 
which we used to unlock the vendor-specific AT command sec without knowing the special 
manufacturer's key, switch the modem to manufacturer mode, and more. 
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8.2 Code execution? 

Of course, we haven't yet executed any of our code. We already had the ability to write a 
pointer to our data at an arbitrary address in the modem's memory. This data could be binary 
code compiled for ARM. It could be sent to the modem via a WAP SMS. The final step was 
to find a suitable location to write the address of our code for intercepting the flow of 
execution. 

We had the ability to write only a single DWORD, so we searched for a place in the modem 
OS code that would immediately transfer control to an address taken from RAM. We found 
such a place in the code of the OS process manager. 

The process manager works with the Thread structure. We found that a function pointer 
could be stored at offset 0x94 in this structure. Pointers to specific OS kernel callbacks are 
often stored in this way. 

Accordingly, we only needed to write a pointer to our ARM code in the heap memory at 
offset 0x94 of a thread descriptor (Figure 97). 

To do this, we rewrote the Thread structure that belonged to the ULP message processor. 

 

Figure 97. Preparing for code execution 

As a result, we executed our code on the modem OS in the process manager's context. In 
doing so, we also confirmed that the data section is executable. 
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8.3 Configuring the MMU 

The code fragment where control was intercepted happened to be a part of a critical section. 
In this code fragment, all interrupts are disabled, making it unviable for gaining persistence 
in the OS. Code in this mode must be executed as fast as possible to avoid triggering the 
watchdog, and no operations involving external components can be performed in this mode. 

Therefore, we decided to use the code executed in the context of the process manager to 
modify the code of an OS thread. But the code section was mapped in RX (Read / Execute) 
mode. Thus, before taking any further action, it was necessary to make sure that the code 
section could be written to. 

During the research, we determined that the kernel stores a complete MMU translation table 
at the logical address 0x00088000. The code section and the data section were mapped in 
page mode, where the size of one page is 0x100000 bytes (1 MB). A 1:1 translation was 
used for these sections. This can be observed in the memory area where the MMU 
translation table is stored (Figure 98). 

 

Figure 98. MMU settings 

The section access mode setting was not standard one for the ARM architecture. Therefore, 
we decided to simply copy the access setting from the data section, which was mapped in 
RWX (read / write / execute) mode, as we have already seen. After that, we were able to 
write to the code section. 

Additionally, we could now obtain a physical memory map of the modem. At offset 
0x00089900 there were free logical addresses guaranteed to be unmapped. However, we 
could map them manually! This approach allowed us to supplement the already available 
information about the modem memory map with information about the exact size of available 
RAM. 

8.4 SMS FS and OTAP activation 

After unlocking the code section for writing, we needed to select a thread suitable for 
modification. UTACAT was chosen in order to then develop a half-duplex communication 
channel with the modem. This process is responsible for handling SMS messages. Its code 
was modified in the SMS processing function (Figure 99). 
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Figure 99. Modification of UTACAT 

After determining the location that needed to be modified, we compiled a set of functions to 
work with the modem's UFS. These functions let us activate OTAP and then install our 
MIDlet. 

Also, since most UFS functions work with local buffers, we needed additional memory 
handling functions to manage modem memory. The final list of functions included: 

• Memory allocation function (malloc) 

• Memory release function (free) 

• Function for opening/creating a file in the UFS (createFile). 

For each of the three functions, we needed to determine whether they could be invoked 
during SMS message handling and to identify their input parameters and their format. 

Memory can be managed by the malloc() and free() functions. However, high-level functions 
for working with the modem’s UFS were only found in the JVM process. Analysis of the 
modem OS code did not indicate the presence of memory sharing between processes, so 
we decided to use the functions of the JVM process within the UTACAT process. 

The malloc() and free() functions have no special execution context. malloc() takes only one 
parameter as input – the size of the buffer to be allocated. The free() function accepts only 
a pointer to the buffer to be freed. They are shown in Figure 100. 

 

Figure 100. Parameters of the free() and malloc() functions 

The remaining function for working with the UFS needed to provide the ability to create or 
overwrite an OTAP activation file. This function in the JVM process is used to work with the 
UFS. It takes only two parameters as input: 

• absolute path to the file in the UFS 
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• operation mode 

We found that 'wb' mode corresponds to the value 0x6C (Figure 101). 

 

Figure 101. Function for creating/opening a file in the UFS 

Following this research, we developed a small driver written in ARM assembly. The driver 
allows execution of all described functions via SMS messages (Figure 102). 

 

Figure 102. Driver for invoking functions via SMS messages 

We decided to use the special magic value 0x6AA677BB in the header to distinguish our 
SMS messages from ULP, OTAP or plain text messages (Figure 103). 
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Figure 103. Using the custom magic value 0x6AA677BB in the message header 

By applying the described technique to execute our code, we were able to successfully run 
the driver within the context of the UTACAT process. This confirmed that the processes' 
RAM was not isolated from each other in any way: all data and code from one process is 
available to any other process. All we had to do was to create the necessary OTAP files on 
the FS and install our MIDlet (Figure 104). 

 

Figure 104. Installing our own MIDlet 
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9 CVE list 

CVE ID CVSS Score Description 

CVE-2023-47610 8.1 (High) A CWE-120: Buffer Copy without Checking Size of Input 
vulnerability exists in Telit Cinterion BGS5, Telit Cinterion 
EHS5/6/8, Telit Cinterion PDS5/6/8, Telit Cinterion ELS61/81, Telit 
Cinterion PLS62 that could allow a remote unauthenticated 
attacker to execute arbitrary code on the targeted system by 
sending a specially crafted SMS message. 

CVE-2023-47611 7.8 (High) A CWE-269: Improper Privilege Management vulnerability exists in 
Telit Cinterion BGS5, Telit Cinterion EHS5/6/8, Telit Cinterion 
PDS5/6/8, Telit Cinterion ELS61/81, Telit Cinterion PLS62 that 
could allow a local, low privileged attacker to elevate privileges to 
"manufacturer" level on the targeted system. 

CVE-2023-47612 6.8 (Medium) A CWE-552: Files or Directories Accessible to External Parties 
vulnerability exists in Telit Cinterion BGS5, Telit Cinterion 
EHS5/6/8, Telit Cinterion PDS5/6/8, Telit Cinterion ELS61/81, Telit 
Cinterion PLS62 that could allow an attacker with physical access 
to the target system to obtain a read/write access to any files and 
directories on the targeted system, including hidden files and 
directories. 

CVE-2023-47613 4.4 (Medium) A CWE-23: Relative Path Traversal vulnerability exists in Telit 
Cinterion BGS5, Telit Cinterion EHS5/6/8, Telit Cinterion 
PDS5/6/8, Telit Cinterion ELS61/81, Telit Cinterion PLS62 that 
could allow a local, low privileged attacker to escape from virtual 
directories and get read/write access to protected files on the 
targeted system. 

CVE-2023-47614 3.3 (Low) A CWE-200: Exposure of Sensitive Information to an Unauthorized 
Actor vulnerability exists in Telit Cinterion BGS5, Telit Cinterion 
EHS5/6/8, Telit Cinterion PDS5/6/8, Telit Cinterion ELS61/81, Telit 
Cinterion PLS62 that could allow a local, low privileged attacker to 
disclose hidden virtual paths and file names on the targeted 
system. 

CVE-2023-47615 3.3 (Low) A CWE-526: Exposure of Sensitive Information Through 
Environmental Variables vulnerability exists in Telit Cinterion 
BGS5, Telit Cinterion EHS5/6/8, Telit Cinterion PDS5/6/8, Telit 
Cinterion ELS61/81, Telit Cinterion PLS62 that could allow a local, 
low privileged attacker to get access to a sensitive data on the 
targeted system. 

CVE-2023-47616 2.4 (Low) A CWE-200: Exposure of Sensitive Information to an Unauthorized 
Actor vulnerability exists in Telit Cinterion BGS5, Telit Cinterion 
EHS5/6/8, Telit Cinterion PDS5/6/8, Telit Cinterion ELS61/81, Telit 
Cinterion PLS62 that could allow an attacker with physical access to 
the target system to get access to a sensitive data on the targeted 
system. 

 

https://www.cve.org/CVERecord?id=CVE-2023-47610
https://www.cve.org/CVERecord?id=CVE-2023-47611
https://www.cve.org/CVERecord?id=CVE-2023-47612
https://www.cve.org/CVERecord?id=CVE-2023-47613
https://www.cve.org/CVERecord?id=CVE-2023-47614
https://www.cve.org/CVERecord?id=CVE-2023-47615
https://www.cve.org/CVERecord?id=CVE-2023-47616
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10  Conclusion 

Though being a special-purpose device, a modern modem implements numerous features 
and potential user scenarios. In fact, it is a complicated system, both from an architecture 
and implementation point of view. Due to performance requirements, most of the key 
features are implemented in low-level languages such as С and Assembler and therefore 
lack built-in safeguards mitigating potential developers’ mistakes. 

In the course of the modem security analysis, we found seven locally exploited vulnerabilities 
and one remotely exploited vulnerability. The combination of these vulnerabilities could 
allow an attacker to completely get control over the modem. In our truck’s security audit 
project, having control of the modem we were able to get our foothold in the 
telecommunication unit embedding it, and further, to propagate to other truck ECUs ending 
with getting control over the main vehicle systems, such as the engine, the gearbox, the 
suspension, the breaks, etc., therefore being able to totally compromise the vehicle safety 
from remote. 

All discovered vulnerabilities have been reported to the vendor. Some of them have not 
been addressed by the vendor so far as the product support discontinued. And even if the 
vendor fixed all the vulnerabilities, as we stated at the beginning of the report, in some cases, 
the modem is integrated in such a way that applying updates would be difficult. 

Thus, to counter the threats posed by the found vulnerabilities, Kaspersky recommends: 

• Contact the mobile operator to disable the sending of SMS messages to the 
device. 

• Use private APN with carefully configured security settings to limit the impact of 
any potential exploit. 

• Enforce application signature verification to prohibit the installation of untrusted 
MIDlets on the device. 

• Control physical access to the device at all stages of transportation to protect 
against the embedding of backdoors. 

• When developing a new product consider remote modem compromise as a high 
potential risk and restrict accordingly access from the modem (or the unit 
embedding it) to other products’ mission-critical components. 

As for the vendors of the modems and similar devices, to mitigate potential risks at the 
design stage, Kaspersky recommends: 

• Introduce additional memory access restrictions in the ThreadX operating system. 

• Use static code analysis tools to determine if there are any errors in logic or pointer 

arithmetic. 

• Perform fuzz testing (“fuzzing”) for the application to find implementation bugs 

using malformed/semi-malformed data injection in an automated fashion. 

• Perform code walk-through audits to look for confusing logic and other errors. 

• Select the development tool stack enforcing security domain separation and 

promoting a Secure by Design approach such as the one advocated by the 

KasperskyOS developers. 

https://learn.microsoft.com/en-us/azure/iot/concepts-eclipse-threadx-security-practices#embedded-security-components-memory-protection
https://os.kaspersky.com/technologies/
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