Kaspersky ICS CERT kaspersky

'’
L =

—God Mode,O\

Researchers run Doom T
on a vehicle’s head unit after 4
remotely attacking its modem

Alexander Kozlov
Sergey Anufrienko

20.1.2025 Version 1.0

Kaspersky ICS CERT kaspersky

INTETOTUCTION ..eovvteeeeeevereeeessseeseeeesessssesseseesesssessess e ssse 2888 3
AcQUIrING the MOAEM FIFMWAIE.......ceeerrerierreeesesesssssiesessessesssssssssssss s ssssssss s sssssss s sssesssssassesssssssesssssasssssssees 5
Remote access to the Modem (CVE=2024-39431)....eeeeeeesseeeseessssssssesssnnns 6
GaiNING PErSISTENCE IN ThE SYSTEM ..ot sssseese s sssssssss s ssssss s e 9
Moving laterally Within The SOC ... esssssssssesssssessessssees 13
Developing an EXPIOit TOr TE AP ... sssssseeeessssesse s sssssssssssssssss s ssssss s ssssssssssssssssssssss s 16
Step 1: Locate the Linux Kernel Dase @dAress ... mieeeemssesssessss 17
Step 2: Locate the KallSYMS TALIE ...t ssssissseeeesssssee s sssssssssssssssssss s sssssssssssssssssssessssssss 17
Step 3: ChooSE @ SYSTEM Call 1O NOOK....oooi e sssesesssessessss 18
Step 4: Locate the call_usermodehelper TUNCTION ... ssssssissseessssssssesssssssssssssssssssssssssssessssssss 19
STEP 5: DISADIE SELINUX...vvvveveveerrereeeessssssssssseeeeeeeesesssessssssssssssssssssessssssssssssssssssssssssesssssesss 19
Step 6: Find @a memory area for COAE INJECTION ... ieeeersrsssssssessssss s sssssssssssssssssssssseesss 19
Step 7: Build and iNJECT SNEIICOE ... ssisssesesssesssss s ssssssssssssssssssssss s 19
Step 8: Modify the SYSTEM Call tADIE ...t sssssss s sssssssss st ssssssssseesss 21
CONCIUSIONeeeeeereeeeeeeeeeeesssseseeeeessssseesess e sssss 28885888 23
ONAVEHCLES HEADUNIT AETER - ©2025 AQ KASPERSKY LAB

REMOTELY ATTACKING ITS MODEM

Kaspersky ICS CERT kaspersky

Exploiting a vulnerability identified in a modem installed in the head units of some
vehicles enabled Kaspersky ICS CERT experts to gain complete control of the
system.

Introduction

Imagine you are a driver speeding down the highway in your brand-new electric
car. All of a sudden, the entire massive multimedia display is filled with Doom, the
iconic 3D shooter game, replacing the navigation map or the controls menu, and
you realize someone is playing it right now by remotely controlling the character.
This is not a dream or an overactive imagination, but a realistic scenario in
today’s world, as vividly demonstrated by Kaspersky ICS CERT experts.

We know that the Internet of Things plays a significant role in the modern world,
where not only smartphones and laptops, but also factories, cars, trains, and
even airplanes are connected to the network. Most of the time, connectivity is
provided via 3G/4G/5G mobile data networks using modems installed in these
vehicles and devices. Increasingly, these modems are integrated into a System-
on-Chip (SoC), which can simultaneously perform multiple functions using a
Communication Processor (CP) and an Application Processor (AP). A general-
purpose operating system such as Android can run on the AP, while the CP,
which handles communication with the mobile network, typically runs on a
dedicated OS. The interaction between the AP, CP, and RAM within the SoC at
the microarchitecture level is a “black box” known only to the manufacturer —
even though the security of the entire SoC depends onit.

It is generally believed that bypassing 3G/LTE security mechanisms is purely an
academic challenge, because a secure communication channel is established
when a user device (User Equipment, UE) connects to a cellular base station
(Evolved Node B, eNB). Even if someone can bypass these mechanisms, discover
a vulnerability in the modem, and execute their own code onit, this is unlikely to
compromise the device’s business logic. This logic (for example, user
applications, browser history, calls, and SMS on a smartphone) resides on the AP
and is presumably not accessible from the modem. Or is it?

To find out, we conducted a security assessment of a modern SoC, Unisoc
UIS7862A, which features an integrated 2G/3G/4G modem. This SoC can be
found in various mobile devices by multiple vendors or, more interestingly, in the
head units of modern Chinese vehicles, which are becoming increasingly
common on the roads. The head unit is one of a car’s key components, and a
breach of its information security poses a threat to road safety, as well as the
confidentiality of user data.

GOD MODE ON: RESEARCHERS RUN DOOM 3
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB
REMOTELY ATTACKING ITS MODEM

Kaspersky ICS CERT kaspersky

During our research, we identified several critical vulnerabilities at various levels
of the Unisoc UIS7862A modem'’s cellular protocol stack. This article discusses a
stack-based buffer overflow vulnerability in the 3G RLC protocol
implementation (CVE-2024-39432). The vulnerability can be exploited to achieve
remote code execution at the early stages of connection, before any protection
mechanisms are activated.

Importantly, gaining the ability to execute code on the modem is only the entry
point for a complete remote compromise of the entire SoC. Our subsequent
efforts were focused on gaining access to the AP. We discovered several ways
to do so, including leveraging a hardware vulnerability in the form of a hidden
peripheral Direct Memory Access (DMA) device to perform lateral movement
within the SoC. This enabled us to install our own patch into the running Android
kernel and execute arbitrary code on the AP with the highest privileges. Details
are provided in the relevant sections.

GOD MODE ON: RESEARCHERS RUN DOOM 4
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB
REMOTELY ATTACKING ITS MODEM

https://nvd.nist.gov/vuln/detail/CVE-2024-39432

Kaspersky ICS CERT kaspersky

Acquiring the modem firmware

The modem at the center of our research was found on the circuit board of the
head unit in a Chinese car.

‘e

-]
iz kg
/ Emjmﬂ
- . -
-
e

A~

SRl - xaks
o

b4

o)

RAARRAARARAARARE a;'
W

zongc VERD
P/N-03,310,00427%"

% o1z

L o R

The circuit board of the head unit

GOD MODE ON: RESEARCHERS RUN DOOM 5
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB
REMOTELY ATTACKING ITS MODEM

Kaspersky ICS CERT kaspersky

Table. Description of the circuit board components

Number Component
in the
board
photo
1 Realtek RTL8761ATV 802.11b/g/n 2.4G controller with wireless LAN (WLAN) and
USB interfaces (USB 1.0/1.1/2.0 standards)
2 SPRD UMW2652 BGA WiFi chip
3 55966 TYADZ 21086 chip
4 SPRD SR3595D (Unisoc) radio frequency transceiver
5 Techpoint TP9950 video decoder
6 UNISOC UIS7862A
7 BIWIN BWSRGX32H2A-48G-X internal storage, Package200-FBGA, ROM Type -
Discrete, ROM Size — LPDDR4X, 48G
8 SCY E128CYNT2ABEOO EMMC 128G/JEDEC memory card
9 SPREADTRUM UMP510G5 power controller
10 FEl1s LE330315 USB2.0 shunt chip
ll SCT2432STER synchronous step-down DC-DC converter with internal
compensation

Using information about the modem’s hardware, we desoldered and read the
embedded multimedia memory card, which contained a complete image of its
operating system. We then analyzed the image obtained.

Remote access to the modem (CVE-2024-39431)

The modem under investigation, like any modern modem, implements several
protocol stacks: 2G, 3G, and LTE. Clearly, the more protocols a device supports,
the more potential entry points (attack vectors) it has. Moreover, the lower in
the OSI network model stack a vulnerability sits, the more severe the
consequences of its exploitation can be. Therefore, we decided to analyze the
data packet fragmentation mechanisms at the data link layer (RLC protocol).

We focused on this protocol because it is used to establish a secure encrypted
data transmission channel between the base station and the modem, and, in
particular, it is used to transmit NAS (Non-Access Stratum) protocol data. This
means that a remote code execution (RCE) vulnerability would allow an attacker
to execute their own code on the modem, bypassing all existing 3G
communication protection mechanisms.

GOD MODE ON: RESEARCHERS RUN DOOM 6
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB
REMOTELY ATTACKING ITS MODEM

Kaspersky ICS CERT kaspersky

UE

NAS

L3
RRC

PDCP
L2 RLC

MAC

L1 PHY

3G protocol stack

The RLC protocol uses three different transmission modes: TM, UM, and AM. We
are only interested in UM (Unacknowledged Mode), because in this mode the 3G
standard allows both the segmentation of data and the concatenation of
several small higher-layer data fragments (Protocol Data Units, PDU) into a single
data link layer frame. This is done to maximize channel utilization. At the RLC
level, packets are referred to as Service Data Units (SDU).

To locate SDU handling functions in the firmware among the vast number of
different functions (about 75,000), it is sufficient to search for constants used
in the process (Ox7FFF, Ox7FFC, Ox7FFB). Among all occurrences of these
constants, we identify those where they are meaningfully applied in the context
of code execution. This yields a limited set of functions, including the function
for handling an incoming SDU packet.

When handling an SDU packet received, its header fields are parsed. The packet
itself consists of a mandatory header, optional headers, and data. Processing an
optional header involves sequentially traversing each field in the header. This is
done using the get_data_offset function. It parses the optional headers,
collects the sizes of data fragments inside the data section, and returns a
pointer to the data within the SDU packet. Important: according to the modem

1See the ETSI TS 136 322 standard.

GOD MODE ON: RESEARCHERS RUN DOOM 7
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB
REMOTELY ATTACKING ITS MODEM

https://www.etsi.org/deliver/etsi_ts/136300_136399/136322/15.01.00_60/ts_136322v150100p.pdf

Kaspersky ICS CERT kaspersky

OS code analysis, information about the size of all concatenated PDUs inside an
SDU is stored on the stack!

ADD

LDRH. W
MULS
UXTH

B

The algorithm processes each header field sequentially. The end of the optional
headers is indicated by the least significant bit (E bit) being equal to O. If it equals
1, processing continues. During processing, data is written to a variable located
on the stack of the calling function. The number of optional headers is not
limited. The stack depth is OxB4 bytes. The size of the packet that can be parsed
(i.e., the number of headers, each header being a 2-byte entry on the stack) is
limited by the SDU packet size of Ox5FO0 bytes.

5 counter

W

STRH.W
BNE

As a result, exploitation can be achieved using just one packet in which the
number of headers exceeds the stack depth (90 headers). It is important to note

GOD MODE ON: RESEARCHERS RUN DOOM 8
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB
REMOTELY ATTACKING ITS MODEM

Kaspersky ICS CERT kaspersky

that this particular function lacks a stack canary, and when the stack overflows,
it is possible to overwrite the return address and some non-volatile register
values in this function. However, overwriting is only possible with a value ending in
one in binary (i.e., a value in which the least significant bit equals 1). Notably,
execution takes place on ARM in Thumb mode, so all return addresses must have
the least significant bit equal to 1. Coincidence? Perhaps.

In any case, sending the very first dummy SDU packet with the appropriate
number of “correct” headers caused the device to reboot. However, at that
moment, we had no way to obtain information on where and why the crash
occurred (although we suspect the cause was an attempt to transfer control to
the address OxAABBCCDD, taken from our packet). Let’s see what can be done
about this.

Gaining persistence in the system

The first and most important observation is that we know the pointer to the
newly received SDU packet is stored in register R2. Return Oriented
Programming (ROP) techniques can be used to execute our own code. However,
the question remains: can we actually execute our code?

We will utilize the available AT command handler to ensure that we really can
execute our code on the modem side. Since we do not know the current address
of the stack frame where our data is located, nor whether the stack is
executable at all, and we are unsure if code sections are writable (although we
suspect they are not), the most reliable way is to move the data to RAM areas.
To do this, we look for a suitable function among the available AT commands.
The first appropriate command is SPSERVICETYPE.

GOD MODE ON: RESEARCHERS RUN DOOM 9
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB
REMOTELY ATTACKING ITS MODEM

Kaspersky ICS CERT kaspersky

1 I

LDR , =aAtcPlusGprsC
ADR , aFalse 121

» [R3] MowW , #
loc_8BB7ADAA IB

print_error_log

-
, [SP,# +
, =off_8BFODDCO
, =asbhD_10

Next, ROP gadgets need to be used to overwrite the address Ox8CE56218
without disrupting the subsequent operation of the incoming SDU packet
handling algorithm. To achieve this, it is sufficient to return to the function from
which the SDU packet handler was called, because it is invoked as a callback,
meaning there is no data linkage on the stack. Given that this function only
added Ox2C bytes to the stack, we need to fit within this size.

GOD MODE ON: RESEARCHERS RUN DOOM 10
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB
REMOTELY ATTACKING ITS MODEM

Kaspersky ICS CERT kaspersky

0S Stuff

callback

SP

rlc_um_rx_smth RET from Calback
call
SP+0x2C
sub_8BB5C3B6& RET
Owerflow
call SDU Parsed data
SP+ 0x2C + OxB4
get_data_offset_umd RET

Stack overflow in the context of the operating system

Having found a suitable ROP chain, we launch an SDU packet that contains it as a
payload. As a result, we see the output OXAABBCCDD in the AT command
console for SPSERVICETYPE. Our code works!

at /dev/sttu_lte5 & sleep ©.1; echo -e "AT+SPSERVICETYPE?\r" > /dev/stty_lte5 *

+SPSERVICETYPE: ©,2864434397

0K
console:/ #

Next, by analogy, we input the address of the stack frame where our data is
located. Unfortunately, it turns out that the stack is not executable. Now, we
face the task of figuring out the MPU settings on the modem. Once again, using
the ROP chain method, we generate code that reads the MPU table, one
DWORD at a time. After many iterations, we obtain the following table.

GOD MODE ON: RESEARCHERS RUN DOOM n
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB
REMOTELY ATTACKING ITS MODEM

Kaspersky ICS CERT kaspersky

Address:
Address:

(0x@8000E00)
(0x0e000000) 2

B ®

® ®
® ®
Q@
® ®
[)
® ®
® ®
® ®
® @
(G
(o]
[
o ®
® ®
Q@
® ®
[)
® ®
® @

Address:
Address:
Address:

(©xe8000800) 4K
(exe8000800)
(©x080008C0)

ul =

® 0O ®
® ® O
Q00
® 00
00
[
0o o
® ® O
0@
[CR G
® 0O
® 00
00
® 0O ®
Q00
® 00
00
[
® 0O ®
® ® O
® 00

[y

Address: 87 8
Address:
Address:
Address:
Address: 8
Address: 8C
Address:

23]
(]
N

(ex87800000)
(ex83000000)
(ox88000000)
(ex89400800)
(ex8beeesee)
(ox8Coo0ee0) 32Mb (sub-region)
(exg8Dg8eeeee) 8Mb (sub-region)

DS mO® ®
o000
® ®

U e e R

000D QO
000000
00000 0®
OO0 00000
00000 @
OO0 0000
OO0 000 0O
0000 O
[w]

N WNNWW
Or mTwr wo
OO0 0000
0000 0®
000D QO
000000
OO R

OO0 00000
0000 0®

0oL~
0000

B

Address:
Address:
Address:
Address:

9 (unused)
3 (unused)
8 (unused)
9 (unused)

OO0 ®
OO0 ®
Q0000
® 00 ®
000 ®
00 ®
OO0 ®
OO0 ®
000 ®
[CRGI GG
OO0 ®
00 ®
o000
® 00 ®
000 ®
[CRGI GG
Q0000
® 00 ®
000 ®
00 ®
OO0 ®
OO0 ®
0000
® 00 ®

The table shows that, as we suspected, the code section is mapped only for
execution. An attempt to change the configuration results in another ROP chain,
but this same section is now mapped with write permissions in an unused slot in
the table. This is possible due to features of MPU programming, specifically the
presence of the overlap mechanism and the fact that a region with a higher ID
has higher priority.

Base Address: 20 @0 e 20 @8 ee 2 ACR: ©0 @0 ©3 @8 (ex3Beeeeee) 16Mb

All that remains is to use the pointer to our data (which is still stored in R2) and
patch the code section that has just been unlocked for writing. The question is
what exactly to patch. The simplest way is to patch the NAS protocol handler by
adding our code to it. To do this, we use one of the NAS protocol commands -
MM information?. We can use it to send a large amount of data at once and, in
response, receive a single byte of data using the MM status command.

As aresult, we not only successfully executed our own code on the modem side
but also established full two-way communication with the modem, using the
high-level NAS protocol as a means of message delivery. In this case, it is an MM
Status packet with the cause field equaling OxAA.

2 See the ETSI TS 124 008 standard, p. 393.

GOD MODE ON: RESEARCHERS RUN DOOM 12
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB
REMOTELY ATTACKING ITS MODEM

https://www.etsi.org/deliver/etsi_ts/124000_124099/124008/17.07.00_60/ts_124008v170700p.pdf

Kaspersky ICS CERT kaspersky

~ Radio Resource Control (RRC) protocol
~ UL-DCCH-Message
~ message
uplinkDirectTransfer
~ UplinkDirectTransfer
cn-DomainIdentity: cs-domain (0)
~ nas-Message (3 bytes)
« GSM A-I/F DTAP - MM Status
Protocol discriminator: Mobility Management messages (5)
Message type: MM Status (0x31)
Reject cause: 0xaa (Unknown)

However, being able to execute our own code on the modem does not enable us
to gain access to user data. Or does it?

Moving laterally within the SoC

An analysis of the internal architecture of the modem processor in the context
of the SoC microarchitecture reveals numerous potential attack vectors against
the AP. While analyzing the modem'’s internals, we immediately noticed that it
uses physical, not virtual, RAM addresses. Additionally, we noted the addresses
at which the AP’s operating system kernel resides.

ums512 1h1@:/data/local/tmp # cat /proc/iomem

70ceeeee-70ceefff : /soc/ap-apb/i2s@76c00000
70deeeee-7edeefff : /soc/ap-apb/i2s@76d00000
70e00000-70e00fff : /soc/ap-apb/i2s@70e00000
711eeeee-711eefff : /soc/ap-apb/sdio@711000080

71200000-71200fff : /soc/ap-apb/sdio@712000080
71400000-71400fff : /soc/ap-apb/sdio@714000080
717680880e-7176ffff : /soc/ap-ahb/vdsp
g8oeeeeee-1ffffefff : System RAM
80080000-80d8ffff : Kernel code

81010806-819cefff : Kernel data

This raises a hypothesis: what if the CP and AP share the same address space,
since RAM in the SoC is likely implemented as a single hardware component? An
analysis of the Device Tree on the AP side further strengthened the assumption
that the CP and AP most likely share the same physical address space (see the

MPU table provided above).
GOD MODE ON: RESEARCHERS RUN DOOM 13
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB

REMOTELY ATTACKING ITS MODEM

Kaspersky ICS CERT

cp—mem
ig—mem
sml-me

debug-mem

m

at
at

3

sipc-mem

t

Ox

0

W I_!j

P

EOxX94000000

at
at

0

R9600RAO size
OEEEEOR size Ox4000000
Ox20000

Si17

T800000

Ox10000AOOG

w8

]

571

{_'I.

Sl

e

FAS

kaspersky

Ox46006000

Ox1000
OxB00000

All that remains is to verify this hypothesis. To do so, we patched the MPU table
again, this time adding an entry that allows read and write access to memory
starting from address Ox80000000. As a result, we successfully mapped the
AP’s address space into the CP’s address space. As a proof of concept, we

patched the first page of the Linux kernel.

unisoc_via python python3 py usb.py -r @x80080000

. @e
. @0
. @0
. @0
. @0
: 00
. ee
. @e
: @8
. @e
. @0
. @0
. @0
. @0
: @0
: 00

At this point,

40
Fo@
00
00
00
00
0o
ee
ee
00
00
00
00
00
00
00

34
19
00
00
00
00
0o
0o
0o
00
00
00
00
00
00
00

14
00
(]3]
(]3]
(]3]
(]%]
(1%
(5]%]
(5]%]
(217
00
00
(]3]
(]3]
(5]5]
(]%]

(]2
00
(]3]
(]3]
(]3]
(1%
(5]%]
(1%
0o
(2]
00
00
(]3]
(]3]
(5]5]
(1%

00
00
(5]5]
(5]5]
(5]5]
(]5]
(1%
(1%
0o
(2]
00
00
(5]5]
(5]5]
(]5]
(]5]

00
00
00
(5]5]
(5]5]
00
(%]
(1%
(1%
00
00
00
00
(5]5]
(15]
00

00
00
00
00
00
00
(215
(1%
00
00
00
00
00
00
00
00

00
0A
00
70
(57
00
(5%
(517
(5%
00
00
00
00
(57
(517
00

00
00
(57
77
ee
(5]%]
ee
ee
ee
20
00
00
(57
ee
(5]%]
(5]%]

08
00
00
6E
(5]7]
(5]%]
(5%
(5%
(5%
00
00
00
00
(5]7]
(5]%]
(5]%]

00
00
00
64
(5]%]
(5]%]
ee
ee
ee
00
00
00
00
(5]%]
(5]%]
(5]%]

00
00
(5%
(5]%]
(5]%]
(5]%]
ee
ee
ee
00
00
00
(5%
(5]%]
(5]%]
(5]%]

00
00
(5]%]
(5]%]
(5]%]
(5]%]
ee
ee
ee
00
00
00
(5]%]
(5]%]
(5]%]
(5]%]

it may seem like the process is complete: we are now able to

execute code not only on the modem, but also on the AP. However, the question
remains: is there an alternative approach?

In the search for the answer, we decided to investigate the available hardware
peripherals on the modem side. The DMA controller was of particular interest to
us. Code analysis showed that all DMA controllers are located in the modem'’s
memory area, starting from address 0x20000000. However, any attempt to
read memory at these addresses resulted in a DataAbort at the hardware core
level. But why?

We analyzed the code responsible for interacting with the DMA controller.
Curiously, some sections of this code have no calls to them, as if the developers
had forgotten to delete them from the modem OS release version. Using these

GOD MODE ON: RESEARCHERS RUN DOOM
ON A VEHICLE'S HEAD UNIT AFTER
REMOTELY ATTACKING ITS MODEM

14
© 2025 AO KASPERSKY LAB

Kaspersky ICS CERT kaspersky

fragments of “forgotten” code, we gained access to the DMA controller. It
turned out that most of the peripherals are physically powered off. To enable
them, it is necessary to write to a special hardware register.

/ /unclock DMA

Besides powering it on, the DMA controller also requires a clock signal to
operate. This is controlled by another hardware register in the same memory
region.

0716060 // enable DMA Clock
01

Ultimately, we managed to unlock access to the DMA controller, which is unused
by the modem’s operating system. We used it, just as we had used MPU tables
earlier, to overwrite the first page of the AP’s operating system.

ums512_1h1@:/ #

ums512_1h1@:/ # /data/local/tmp/mem-rw-app -x -m -r ©x80080060 128
Going to operate on address: 80080000 and device /proc/rmem
Length: 128 (@x80) bytes

0000: 00 40 34 14 ©OO 00 00 90 ©0 00 ©8 6@ 00 0 @0

eele. 00 fo 94 61 ©© 00 60 60 ©a OO 60 60 ©O 08 e
0020: 00 €0 00 00 ©OO Po OO 60 ©° 60 20 G@ 0O 66 ee
ee30: OO 60 00 60 ©° 00 e e 64 6d 20 77 6e
0040: 60 60 00 6O ©O 66 66 6O ©o 00 00 6@ ©e 66 ee
0050 00 00 00 00 OO 00 B0 60 ©° 00 00 6@ OO 60 ee

Unfortunately, unlike the MPU tables, software updates do not protect against
this microarchitectural issue. Clearly, the capabilities it provides can be
leveraged to compromise the security of the AP by exploiting a single RCE-level
vulnerability in the modem.

GOD MODE ON: RESEARCHERS RUN DOOM 15
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB
REMOTELY ATTACKING ITS MODEM

Kaspersky ICS CERT kaspersky

Developing an exploit for the AP

After gaining the ability to modify the AP’s RAM externally (either by executing
code on the modem and reconfiguring its MPU, or by using the DMA peripheral),
the next question arises: how can we execute our code on the AP and achieve
persistence within its operating system when we have only the ability to read
and write its memory?

For demonstration (Proof of Concept), we attempted to install and launch the
DOOM game on the AP as a payload. The implementation works as follows: the
payload component running on the modem sequentially locates the key
structures of the Linux kernel, then injects its own code to perform the
necessary actions. The entire process must occur without user interaction and
bypass Android’s standard security mechanisms.

Locate the Linux kernel
base address

Locate the kallsyms table
Locate kernel symbols
Disable SELinux
Prepare and inject shellcode

Modify the system call table

Algorithm for executing our code on AP side

GOD MODE ON: RESEARCHERS RUN DOOM 16
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB
REMOTELY ATTACKING ITS MODEM

Kaspersky ICS CERT kaspersky

Step 1: Locate the Linux kernel base address

The first step in the attack is to determine the base address of the Linux kernel
loaded into memory. In modern versions of Android, the kernel often uses
Address Space Layout Randomization (ASLR), but its base address can be easily
determined using known signatures. In our case, this is not even necessary, since
the kernel base address is always Ox80080000 (PA) or Oxffffff8008080000
(VA).

Step 2: Locate the kallsyms table

After discovering the kernel's base address, we need to find the kernel symbol
table (kallsyms). The table contains the addresses of all exported kernel
functions and variables, allowing us to locate the objects required for the attack.

The kallsyms table is usually located in the .rodata section and has a
characteristic structure:

e array of symbol addresses;
e array of symbol names;

e index table;

e symbol-type table.

It's worth noting that the array of symbol addresses may use relative addressing
instead of absolute addressing to save memory on 64-bit systems, and the
symbol name strings may also be compressed. In our case, both of these
mechanisms (relative addressing and symbol name compression) were used,
complicating the process of locating the table in kernel memory. Nevertheless,
the table was constructed using a heuristic algorithm that “assembles” it from
data deemed valid and verifies its integrity after assembly.

In our case, we need to find the following symbols, which are critically important
for the attack:

e sys_call_table — the system call table;

e call_usermodehelper — a function that launches user mode processes
from the kernel;

e selinux_enforcing — the SELinux state flag.

We used the following code to decompress the kernel symbol names.

GOD MODE ON: RESEARCHERS RUN DOOM 7
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB
REMOTELY ATTACKING ITS MODEM

Kaspersky ICS CERT kaspersky

fn extract_name<'b>(&self, pos: usize) (&'b str,
const MAX_NAME_LEN: usize 256;
let name_len self.names[pos] as usize;
let mut buffer_index = 0;
let mut off = pos + 1;
let mut skipped_first = false;

unsafe {
for _ in 0..name_len {
let token_index = self.names[off] as usize;
off 1;

let token = self.get_token(token_index);

for &byte in token.as_bytes() {
if !skipped_first {
skipped_first = true;
} else if buffer_index < MAX_NAME_LEN f{
BUFFER [buffer_index] = byte;
buffer_index 1,

let result_str = str::from_utf8(S&BUFFERL..buffer_index]).unwrap_or("");
(result_str, name_len 1)

£n get_token(&self, token_index: usize) &str {
let start self.token_index[token_index] as usize;
let end = self.token_table[start..]
.diter()
.position(|&c| c 0)
.map(|p| start + p)
.unwrap_or_else(|| self.token_table.len());
: :from_utf8(&self.token_table[start..end]).unwrap()

Step 3: Choose a system call to hook

The system call table (sys_call_table) is a key element for the attack. In our
system, it is located at address 0x809D2000 (PA) or Oxffffff80089d2000 (VA).
The table is an array of pointers to system call handler functions. Each table
entry corresponds to a particular system call, identified by a number. These
numbers are fixed for each architecture; for ARM64, for example, they can be
found on Chromium OS Docs.

GOD MODE ON: RESEARCHERS RUN DOOM 18
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB
REMOTELY ATTACKING ITS MODEM

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#arm64-64_bit

Kaspersky ICS CERT kaspersky

We are interested in the getpriority system call with the number 141 (0x8d). The
corresponding entry in the table is located at offset 141*8 = Ox468 = 1128 bytes.
Thus, the pointer to the getpriority handler is at address Ox809D2468 (PA).

Step 4: Locate the call_usermodehelper function

Once the kernel symbol table (kallsyms) has been found and reconstructed,
obtaining the address of the call_usermodehelper function becomes an easy
task. In our system, this function is located at Oxffffff80080bfeQ0. It allows
kernel-mode drivers to launch user-mode processes, and this function is what
we will use to load, install, and launch the DOOM APK file.

Step 5: Disable SELinux

For the attack to succeed, we need to disable SELinux enforcement temporarily
(or permanently); otherwise, it will prevent user-mode processes from being
launched via User Mode Helper. To do this, we look up the address of the global
variable selinux_enforcing in the kernel symbol table. Setting it to O disables
SELinux policy enforcement.

Step 6: Find a memory area for code injection

Now we need to find a suitable place in kernel memory to place the shellcode.
This should be an unused “hole” in the kernel code section where additional code
can be placed without disrupting system operation. In our system, the code
section occupies the region from 0x80080800 to 0x809d0000 and is 0x94f800
bytes in size. Using static analysis, we found a sufficiently large free memory
region at address 0x809cb00Q0, closer to the end of the kernel code section.
Since memory is allocated in pages, free space can often be found at the end of
sections, and using it will not affect system functionality in any way.

Step 7: Build and inject shellcode

The task of the shellcode is to execute several commands in the user space. For
example, the Activity Manager (am) can be used to launch the installed
application: /system/bin/am start -n
com.eltechs.originaldoom,/.doomDemo.DoomDemo.

Before this, the shellcode must perform a number of other important actions:

e provide protection against re-execution;
e save the processor context;

GOD MODE ON: RESEARCHERS RUN DOOM 19
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB
REMOTELY ATTACKING ITS MODEM

Kaspersky ICS CERT kaspersky

e set environment variables required by Package/Activity Manager;
o call the original getpriority handler.

The shellcode is precompiled, position-independent machine code for the
ARM®64 architecture, at the end of which is a table of pointers to the necessary
elements, which is populated on the modem side.

printk_address:

.quad Oxffff+f800810a6¢c0O
call_umh_address:

.quad Oxffff+f80080bfe00
syscall_address:

.quad Oxffffff80080bbebc
argv:

.quad OxfffF+f800915d+00
envp:

.quad Oxf+ffff800915dfu0

marker_address:

.quad Oxffffff800915d+f0

The code also contains a table of environment variables required for the correct
operation of user-space processes such as am (Activity Manager), pm (Package
Manager), and others.

GOD MODE ON: RESEARCHERS RUN DOOM 20
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB
REMOTELY ATTACKING ITS MODEM

Kaspersky ICS CERT kaspersky

umh_env_path:

com. android.runtime/bin: / tem/bin:
in"

umh_env_boot_cp:
.asciz

"BOOTCL?

0j.jar

Step 8: Modify the system call table

The final step is to replace the pointer to the getpriority system call handler in
sys_call_table with the address of our shellcode, which has already been placed
in a free area within the kernel code section. After a successful modification, our
code is automatically executed the next time getpriority is called. Since various
Android components frequently use this system call, activation occurs within a
short period without further intervention.

At the end of its operation, the shellcode restores the processor register state
and calls the original getpriority system call.

GOD MODE ON: RESEARCHERS RUN DOOM 21
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB
REMOTELY ATTACKING ITS MODEM

Kaspersky ICS CERT kaspersky

Ldp
Ldp
Ldp
Ldp
Ldp

call_original:

adr x2, syscall_address
ldr x2, [x2]

br x2

As aresult of the entire exploit chain, we gain the ability to execute our own

code on the AP.
GOD MODE ON: RESEARCHERS RUN DOOM 22
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB

REMOTELY ATTACKING ITS MODEM

Kaspersky ICS CERT kaspersky

V7 J

Now we can confidently say that the head units of certain Chinese vehicles are
suitable for playing Doom. The entire process is performed remotely and without
any user interaction, successfully bypassing all existing Android and Linux kernel
security mechanisms thanks to direct memory access.

Conclusion

B centify 3G/4G vuinerability
B efeat modem OS

&) efeat cPU

a uietly update file system

B irectly access to user data

Exploiting just one vulnerability on the modem side has provided complete
control ("God Mode”) over the entire SoC. Importantly, although this vulnerability
can be fixed via software, the microarchitectural issues discovered can only be
addressed in future batches of the specific SoC. A reasonable question arises: Is
this hardware “feature” unique to this particular SoC?

GOD MODE ON: RESEARCHERS RUN DOOM 23
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB
REMOTELY ATTACKING ITS MODEM

Kaspersky ICS CERT kaspersky

By taking control of the SoC, an attacker not only gains the ability to control the
information flow between the device and the outside world but also obtains
virtually unlimited access to the most critical components of the end device. If
the SoC used in the vehicle’s head unit is compromised, it is unlikely that an
attacker would stop at installing Doom. They could gain remote access to user
data, including intercepting audio through the built-in microphone, or extend the
attack to connected mobile devices. Moreover, if a configuration error exists in
the onboard CAN bus gateway, an attacker might even be able to impact other
vehicle control units remotely?.

The problem is further aggravated by the fact that, when a serious vulnerability
is discovered in a modem, it may take a significant amount of time to update all
devices that use that SoC. In some devices, remote update functionality may
not be implemented at all. In such cases, installing the update will require
additional effort and cost on the part of the end device manufacturer, since
every vulnerable SoC would have to be updated manually.

3 For more information on threats related to remote impact on vehicles, read Modern vehicle cybersecurity
trends and "Security researchers are the main factor motivating automakers to invest in protecting their

products”.
GOD MODE ON: RESEARCHERS RUN DOOM 24
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB

REMOTELY ATTACKING ITS MODEM

https://ics-cert.kaspersky.com/publications/reports/2025/08/21/modern-vehicle-cybersecurity-trends/
https://ics-cert.kaspersky.com/publications/reports/2025/08/21/modern-vehicle-cybersecurity-trends/
https://ics-cert.kaspersky.com/publications/blog/2025/10/30/security-researchers-are-the-main-factor-motivating-automakers-to-invest-in-protecting-their-products/
https://ics-cert.kaspersky.com/publications/blog/2025/10/30/security-researchers-are-the-main-factor-motivating-automakers-to-invest-in-protecting-their-products/

Kaspersky ICS CERT kaspersky

Kaspersky Industrial Control Systems Cyber Emergency Response Team (Kaspersky ICS CERT)
is a global Kaspersky project aimed at coordinating the efforts of automation system vendors,
industrial facility owners and operators, and IT security researchers to protect industrial enterprises
from cyberattacks. Kaspersky ICS CERT devotes its efforts primarily to identifying potential
and existing threats that target industrial automation systems and the industrial internet of things.

Kaspersky ICS CERT ics-cert@kaspersky.com

GOD MODE ON: RESEARCHERS RUN DOOM 25
ON A VEHICLE'S HEAD UNIT AFTER © 2025 AO KASPERSKY LAB
REMOTELY ATTACKING ITS MODEM

https://ics-cert.kaspersky.com/
mailto:ics-cert@kaspersky.com

